Optical Properties of Undoped and Dy3+-Doped Boro-Tellurite Glass

Article Preview

Abstract:

A series of undoped and Dy3+-doped boro-tellurite glasses were prepared, and their optical properties have been studied through XRD, absorption, optical band gap energy and photoluminescence. The XRD pattern has been used to confirm the amorphous nature of the prepared glass. The optical absorption spectra showed eight absorption bands which corresponded to 4I15/2, 4F9/2, 6F3/2, 6F5/2, 6F7/2, 6F9/2, 6F11/2 and 6H11/2 transitions from the ground state, 6H15/2. The optical band gap energy, Eopt for undoped glass was 3.08 eV and the Dy3+-doped glasses Eopt values varied from 3.16 3.24 eV. The emission spectra from photoluminescence spectroscopy showed two dominant emission peaks at 483 nm and 574 nm with an excitation wavelength of 325 nm (3.82 eV). Keywords: X-ray diffraction, boro-tellurite glass, photoluminescence, absorption spectrum, UV-Vis spectroscopy, energy band gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Nii, K. Ozaki, M. Herren and M. Morita, J. Luminescence 76-77 (1998) 116.

Google Scholar

[2] A. Mori, Y. Ohishi and S. Sudo, Electronic Letters 33 (1997) 863.

Google Scholar

[3] S.A. Saleem, B.C. Jamalaiah, M. Jayasimhadri, A. Srinivasa Rao, Kiwan Jang and L. Rama Moorthy. J. Quantitative Spectroscopy & Radiative Transfer 112 (2011) 78-84.

DOI: 10.1016/j.jqsrt.2010.08.017

Google Scholar

[4] A. Mohan Babu, B.C. Jamalaiah, J. Suresh Kumar, T. Sasikala and L. Rama Moorthy. J. Alloys & Compounds 509 (2011) 457-462.

DOI: 10.1016/j.jallcom.2011.01.136

Google Scholar

[5] K. Maheshvaran and K. Marimuthu. J. Alloys & Compounds 509 (2011) 7427-7433.

Google Scholar

[6] Feng Zhang, Zhisong Xiao, Lu Yan, Fang Zhu and Anping Huang. Proc. Of SPIE Vol. 7518 (2009) 751817.

Google Scholar

[7] M.V. Vijaya Kumar, B.C. Jamalaiah, K. Rama Gopal and R.R. Reddy. J. Luminescence 132 (2012) 86-90.

DOI: 10.1016/j.jlumin.2011.07.021

Google Scholar

[8] A. Thulasiramudu and S. Buddhudu. Spectrochem. Acta Part A 67 (2007) 802-807.

Google Scholar

[9] L.F. Johnson and H.J. Guggenheim. Appl. Pys. Lett. 19 (1971) 44.

Google Scholar

[10] A. Toncelli, M. Tonelli, A. Cassanho and H.P. Jenssen. J. Luminescence 82(4) (1999) 291-298.

DOI: 10.1016/s0022-2313(99)00056-3

Google Scholar

[11] P. Babu and C.K. Jayasankar. Optical Materials 15(1) (2000) 65-79.

Google Scholar

[12] W.T. Carnall, P.R. Fields and K. Rajnak, J. Chem. Phys. 49 (1968) 4424.

Google Scholar

[13] N.F. Mott and E.A. Davis. Electronic Processes In Non-Crystalline Materials. Clarendon Press, Oxford (1971) 237-241.

Google Scholar

[14] Y.C. Ratnakaram and A. Viswaradha Reddy, J. Non-Cryst. Solids 227 (2000) 142-154.

Google Scholar

[15] K. Maheshvaran and K. Marimuthu, J. of Luminescence 132 (2012) 2259-2267.

Google Scholar

[16] R. El-Mallwany, M. Dirar Abdalla and I. Abbas Ahmed, Mater. Chem. Phys. 109 (2008) 291-296.

Google Scholar