[1]
S. Rada, E. Culea, M. Bosca, M. Culea, P. Pascuta, M. Neumann, Effect of the introduction of gadolinium ions in boro-tellurite glasses Journal of Optoelectronics and Advanced Materials, 10 (2008) 2316-2318.
DOI: 10.1016/j.vibspec.2007.12.005
Google Scholar
[2]
X. Shen, Q. Nie, T. Xu, S. Dai, X. Wang. Absorption and emission analysis of RE3+(Sm3+ and Dy3+): lithium boro tellurite glass, J Nanosci Nanotechnol. 6 (2009) 3672-7.
Google Scholar
[3]
P. Nandi, A. Srinivasan, G. Jose, Structural dependent thermal and optical properties of rare earth doped glass with mixed glass formers, Optical Materials 31 (2009) 653–659.
DOI: 10.1016/j.optmat.2008.07.003
Google Scholar
[4]
Shyama P Sinha. Complexes of the rare earths, Oxf (1966).
Google Scholar
[5]
K. Selvaraju, K. Marimuthu n. Structural and spectroscopic studies on concentration dependent Er3+ doped boro-tellurite glasses, Journal of Luminescence 132 (2012) 1171–1178.
DOI: 10.1016/j.jlumin.2011.12.056
Google Scholar
[6]
R. Reisfeld, Y. Eckstein. Radiative and non-radiative transition probabilities and quantum yields for excited states of Er3+ in germanate and tellurite glasses, J. Non-Cryst. Solids 15 (1974) 125.
DOI: 10.1016/0022-3093(74)90117-3
Google Scholar
[7]
R.T. Karanakaran, K. Marimuthu, S. Surendra Babu, S. Arumugam. Structural, optical and thermal studies of Eu3+ ions in lithium fluoroborate glasses, Solid State Sci. 11 (2009) 1882.
DOI: 10.1016/j.solidstatesciences.2009.08.001
Google Scholar
[8]
I. Ardelean, C. Horea. FTIR spectroscopic investigations of MnO-P2O5- TeO2 glasses, J. Optoelectro. Adv. Mater. 8 (3) (2006) 1111.
Google Scholar
[9]
W. T. Carnall, P. R. Fields, and K. Rajnak. Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ ,J. Chem. Phys. 49 (1968) 44-12.
DOI: 10.2172/4813029
Google Scholar
[10]
K. Marimuthu, S. Surendra Babu, G. Muralidharan, S. Arumugam, C. K. Jayasankar. Structural and optical studies of Eu3+ ions in alkali borate glasses, Phys. Status Solidi. 206 (2009) 131–139.
DOI: 10.1002/pssa.200824198
Google Scholar
[11]
W. T. Carnall, P. R. Fields, and K. Rajnak Chemistry Division, Argonne National Laboratory, Argonne, Illinois. J. Chem. Phys. 49, (1968) 44-24.
Google Scholar
[12]
Q. Qian, C. Zhao, G.F. Yang, Z.M. Yang, Q.Y. Zhang, Z.H. Jiang. Thermal stability and spectroscopic properties of Er+-doped antimony-borosilicate glasses, Spectrochimica Acta Part A. 71 (2008) 280–285.
DOI: 10.1016/j.saa.2007.12.014
Google Scholar
[13]
R.P. Sreekanth Chakradhara, K.P. Ramesha, J.L. Raob, J. Ramakrishnaa, Journal of Physics and Chemistry of Solids 64 (2003) 641–650.
Google Scholar
[14]
E. Wu, Hao Chen, Zhenrong Sun, and Heping Zeng. Broadband saturable absorber with cobalt-doped tellurite glasses, Optics Letters. 28 (2003) 1692-1694.
DOI: 10.1364/ol.28.001692
Google Scholar
[15]
Y.C. Ratnakaram, A. Viswanadha Reddy. Electronic spectra and optical band gap studies in neodymium chlorophosphate glasses, Journal of Non-Crystalline Solids 277 (2000) 142-154.
DOI: 10.1016/s0022-3093(00)00297-0
Google Scholar
[16]
M.S. Shakeri, M. Rezvani. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions, Spectrochimica Acta Part A 79 (2011) 1920– (1925).
DOI: 10.1016/j.saa.2011.05.090
Google Scholar