Luminescence Spectra of Erbium Doped Zinc Tellurite Glass Embedded with Gold Nanoparticles

Article Preview

Abstract:

Understanding the mechanism of visible luminescence enhancement from rare earth doped glasses containing metallic nanoparticles (NPs) is the challenging issue. The photoluminescence (PL) spectra of Er3+: Au-doped tellurite glass is investigated for different concentration of gold NPs. A series of glasses with composition (70-x) TeO2 -30 ZnO-0.5 Er2O3 x Au where x = (0.1, 0.3, 0.5 mol%) are prepared by melt-quenching method. The thermal parameters such as the glass transition (Tg), crystallization temperature (Tc) and melting temperature (Tm) are determined using DTA thermogram. PL spectra exhibit two distinct peaks at 493nm and 550nm which are assigned to the 2H11/2-4I15/2 and 4S3/2-4I15/2 transition respectively. The influence of gold NPs in enhancing the luminescence intensity under the 360nm excitation wavelength is observed understood.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-235

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. R. P. Kassab, M. E. Camilo, C. T. Amâncio, D. M. Silva, and J. R. Martinelli, Optical Materials Vol. 33 (2011), 1948–(1951).

Google Scholar

[2] V. A. G. Rivera, Y. Ledemi , S. P. A. Osorio , D. Manzani, Y. Messaddeq , L.A.O. Nunes , E. Marega, Journal of Non-Crystalline Solids Vol. 358 (2012), 399-405.

DOI: 10.1016/j.jnoncrysol.2011.10.008

Google Scholar

[3] S. P. A. Osorio, A. Victor, G. Rivera, L. A. O. Nunes, E. Jr. Marega , D. Manzani, Y. Messaddeq, DOI 10. 1007/s11468-011-9275-7.

Google Scholar

[4] R. Balda , M. Al-Saleh, A. Miguel, J.M. Fdez-Navarro, J. Fernández, Optical Materials Vol. 34 (2011), 481–486.

DOI: 10.1016/j.optmat.2011.04.021

Google Scholar

[5] H. Mertens, A. F. Koenderink, A. Polman, Phys, Rev B 76 (2007), 115-123.

Google Scholar

[6] W. Stambouli, H. Elhouichet, B. Gelloz, M. Fe´ rid, N. Koshida , Journal of Luminescence Vol. 132 (2012), 205–209.

DOI: 10.1016/j.jlumin.2011.08.018

Google Scholar

[7] V.A.G. Rivera, S.P.A. Osorio, D. Manzani , Y. Messaddeq , L.A.O. Nunes , E. Marega Jr, Optical Materials Vol. 33 (2011), 888–892.

DOI: 10.1016/j.optmat.2011.01.015

Google Scholar

[8] H. Mertensa , A. Polman, APPLIED PHYSICS LETTERS 89, (2006).

Google Scholar

[9] L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, J. Appl. Phys. Vol. 110, 083111 (2011); doi: 10. 1063/1. 3651399.

Google Scholar

[10] M. A. Garcia, J. Phys. D: Appl. Phys. Vol. 44 (2011) 283001 (20pp).

Google Scholar

[11] N Jaba, A Kanoun, H Mejri, A Selmi, S Alaya and H Maaref , J. Phys., Condens. Matter Vol. 12 (2000), 4523–4534.

DOI: 10.1088/0953-8984/12/20/307

Google Scholar

[12] R. Debnath, A. Ghosh, S. Balaji, Chemical Physics Letters 474 (2009), 331–335.

Google Scholar

[13] R. El-Mallawany , M. Dirar Abdalla , I. Abbas Ahmed Materials, Chemistry and Physics Vol. 109 (2008), 291–296.

Google Scholar

[14] N. Mott, E. Davis, Electronic Process in Non-Crystalline Materials, UK (1979) in press.

Google Scholar

[15] F. Urbach: Phys. Rev. 92 (1953), 1324-1325.

Google Scholar

[16] K. Azman, M. R. Sahar, M. S. Rohani, World Academy of Science, Engineering and Technology Vol. 64 (2010).

Google Scholar