Properties of Pt Schottky Contact on Porous In0.27Ga0.73N Thin Film Revealed from I-V Measurements

Article Preview

Abstract:

The electrical properties of a Pt Schottky contact on porous In0.27Ga0.73N/GaN/AlN/Si (111) thin film that was grown via the plasma-assisted molecular beam epitaxy technique were reported. Porous film nanostructure was synthesized using the electrochemical etching technique at a current density of 25 mA/cm2. The formed pores were dissimilar in terms of size and shape. The effects of annealing temperature and applied bias on Schottky contact for porous sample were investigated by current-voltage (IV) measurements in ambient illumination. The barrier height and ideality factor were determined. The Pt Schottky contact exhibits thermal stability during annealing. Schottky barrier height increased when each of the annealing temperature and bias voltage were increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

558-563

Citation:

Online since:

February 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chen, B. Liu, H. Lu, Z. Xie, R. Zhang, Y. Zheng, Electron Device Lett., IEEE, 30 (2009) P. 605.

Google Scholar

[2] Z. Hassan, Y. Lee, F. Yam, K. Ibrahim, M. Kordesch, W. Halverson, P. Colter, Solid state commun. 133 (2005) P. 283.

DOI: 10.1016/j.ssc.2004.11.022

Google Scholar

[3] F.K. Yam, Z. Hassan, Mater. Lett. 63 (2009) P. 724.

Google Scholar

[4] A. Ramizy, Z. Hassan, K. Omar, Sens. Actuators, B, 155 (2011) P. 699.

Google Scholar

[5] F. Yam, Z. Hassan, S. Ng, Thin Solid Films, 515 (2007) P. 3469.

Google Scholar

[6] A. Loni, L. Canham, M. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. Arrand, T. Benson, Thin Solid Films, 276 (1996) P. 143.

DOI: 10.1016/0040-6090(95)08075-9

Google Scholar

[7] E. Moyen, W. Wulfhekel, W. Lee, A. Leycuras, K. Nielsch, U. Gösele, M. Hanbücken, Appl. Phys A, 84 (2006) P. 369.

DOI: 10.1007/s00339-006-3639-4

Google Scholar

[8] X. Guo, T. Williamson, P. Bohn, Solid State Commun. 140 (2006) P. 159.

Google Scholar

[9] G. Korotcenkov, B. Cho, Crit. Rev. Solid State Mater. Sci. 35 (2010) P. 1.

Google Scholar

[10] F. Yam, Z. Hassan, A. Hudeish, Thin Solid Films, 515 (2007) P. 7337.

Google Scholar

[11] K. Beh, F. Yam, C. Chin, S. Tneh, Z. Hassan, J. Alloys Compd. 506 (2010) P. 343.

Google Scholar

[12] K. Al-Heuseen, M. Hashim, N. Ali, Appli. Surf. Sci. 257 (2011) P. 6197.

Google Scholar

[13] K. Al-heuseen, M.R. Hashim, N.K. Ali, Physica B: Condensed Matter, 405 (2010) P. 3176.

Google Scholar

[14] S. Li, K. Yu, J. Wu, R. Jones, W. Walukiewicz, J. Ager III, W. Shan, E. Haller, H. Lu, W.J. Schaff, Phys. Rev. B: Condens. Matter, 71 (2005) P. 161201.

DOI: 10.1103/physrevb.71.161201

Google Scholar

[15] A.S. Hussein, Z. Hassan, S.M. Thahab, S.S. Ng, H.A. Hassan, C.W. Chin, Appl. Surf. Sci., 257 (2011) P. 4159.

Google Scholar

[16] S.H. Abud, Z. Hassan, F.K. Yam, Mater. Lett. 107 (2013) P. 367.

Google Scholar

[17] S.H. Abud, Z. Hassan, F.K. Yam, A.J. Ghazai, Adv. Matt. Res. 620 (2013) P. 368.

Google Scholar

[18] S.H. Abud, A. Ramiy, A.S. Hussein, Z. Hassan, F.K. Yam, Superlattices Microstruct. 60 (2013) P. 224.

Google Scholar

[19] H. Cetin, E. Ayyıldız, Physica B: Condensed Matter, 394 (2007) P. 93.

Google Scholar

[20] C. Crowell, Solid-State Electron. 8 (1965) P. 395.

Google Scholar

[21] L. Messick, Solid-State Electron. 23 (1980) P. 551.

Google Scholar