Gas Sensing Using Static and Dynamic Modes Piezoresistive Microcantilever

Article Preview

Abstract:

A microcantilever has attracted interest in an application of high sensitivity sensor for chemical, physical, or biological objects. In this paper, we investigate a possibility of a piezoresistive microcantilever for gas sensing using a static and a dynamic modes operation. The gas used here is a liquefied petroleum gas (LPG). The measurement was performed by a Wheatstone bridge circuit in order to measure the microcantilever deflection or resonance frequency shift of the microcantilever vibration. The result shows that in the static mode, an output of Wheatstone bridge circuit, which attributes to the microcantilever deflection, changes due to the gas detection. For the dynamic mode, a voltage of peak-to-peak, which represents the microcantilever vibrations, decreases with increasing the gas flow time. This occurs due to the resonance frequency shift caused by the addition of gas molecules on the microcantilever surface. These results indicate that the developed system can be used as the gas sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-32

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Raiteri, M. Grattarola, H. Butt, P. Skladal, Micromechanical cantilever-based biosensor, Sens. Actuators B 79 (2001) 115-126.

DOI: 10.1016/s0925-4005(01)00856-5

Google Scholar

[2] T.L. Porter, M.P. Eastman, D.L. Pace, M. Bradley, Sensor based on piezoresistive microcantilever technology, Sens. Actuators A 88 (2001) 47-51.

DOI: 10.1016/s0924-4247(00)00498-2

Google Scholar

[3] H. Sone, Y. Fujinuma, S. Hosaka, Picogram mass sensor using resonance frequency shift of cantilever, Jpn. J. Appl. Phys. 43 (2004) 3648-3651.

DOI: 10.1143/jjap.43.3648

Google Scholar

[4] H. Sone, A. Ikeuchi, T. Izumi, H. Okano, S. Hosaka, Femtogram Mass Biosensor Using Self-Sensing Cantilever for Allergy Check. Jpn. J. Appl. Phys. 45 (3B) (2006) 2301-2304.

DOI: 10.1143/jjap.45.2301

Google Scholar

[5] M. Li, H.X. Tang, M.L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nat. Nanotech. 2 (2007) 114-120.

DOI: 10.1038/nnano.2006.208

Google Scholar

[6] R. Nuryadi, A. Djajadi, R. Adiel, L. Aprilia, N. Aisah, Resonance frequency change in microcantilever-based sensor due to humidity variation, Mater. Sci. Forum 737 (2013) 176-182.

DOI: 10.4028/www.scientific.net/msf.737.176

Google Scholar

[7] R. Nuryadi, Modeling of I-, T- and V-Shaped Microcantilevers for Environmental Monitoring, Mater. Sci. Forum 737 (2013) 119-125.

DOI: 10.4028/www.scientific.net/msf.737.119

Google Scholar

[8] L. Aprilia, R. Nuryadi, D. Hartanto, Calculation of Stress and Deflection in Double Layer Microcantilever for Biosensor Application, Int. J. Computational Eng. Res. 3(2) (2013) 53-57.

Google Scholar

[9] L. Aprilia, R. Nuryadi, D. Hartanto, Sensitive Layer Thickness Dependence on Microcantilever Sensor Sensitvity, Adv. Mater. Res. 789 (2013) 219-224.

DOI: 10.4028/www.scientific.net/amr.789.219

Google Scholar

[10] J. Zhou, P. Li, S. Zhang, Y. Huang, P. Yang, M. Bao, G. Ruan, Self-excited piezoelectric microcantilever for gas detection, Microelectro. Eng. 69 (2003) 37–46.

DOI: 10.1016/s0167-9317(03)00227-2

Google Scholar

[11] A. Kooser, R.L. Gunter, W.D. Delinger, T.L. Porter, M.P. Eastman, Gas sensing using embedded piezoresistive microcantilever sensors, Sens. Actuators B 99 (2004) 474–479.

DOI: 10.1016/j.snb.2003.12.057

Google Scholar

[12] H.P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, F. Battiston, J.P. Ramseyer, E. Meyer, T. Mezzacasa. L. Scandella, H. J. Guntherodt, Ch. Gerber, J.K. Gimzewski, A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors, Appl. Phys. A 66 (1998).

DOI: 10.1007/s003390051100

Google Scholar

[13] J.A. Harley, T. W. Kenny, High-sensitivity piezoresistive cantilevers under 1000 A thick, App. Phys. Lett. 75 (2) (1999) 289-292.

DOI: 10.1063/1.124350

Google Scholar

[14] G. Yoshikawa, Mechanical analysis and optimization of a microcantilever sensor coated with a solid receptor film, Appl. Phys. Lett. 98 (2011) 173502-1_173502-3.

DOI: 10.1063/1.3583451

Google Scholar