Effects of NiO/TiO2 Mixed Nanoparticles on Quasi-Solid Dye-Sensitized Solar Cells

Article Preview

Abstract:

In this work, a magnetic polymer electrolyte composed by agarose as polymer matrix, NMP as solvent and NiO/TiO2 mixed nanoparticles as modifier was investigated and employed in the solid-sate dye-sensitized solar cells (DSSCs). The influence of NiO/TiO2 mixed nanoparticles on the morphology and ionic conductivity of the polymer electrolyte was studied by SEM and electrochemical impedance spectra. From SEM analysis, the mixing of NiO with TiO2 nanoparticle in polymer electrolyte leads to smooth surface of the polymer electrolyte films. The polymer electrolyte modified by mixed nanoparticles with NiO: TiO2 ratio of 1:4 shows the maximum ionic conductivity of 6.64×10-3 S·cm-1. From photovoltaic performance study, the increase of NiO: TiO2 ratio in polymer electrolyte leads to an improvement in light-to-electric conversion efficiency. The optimal photoelectric efficiency is achieved at NiO: TiO2 ratio of 1: 4. Besides, after treatment under an external magnetic field, the DSSC modified with NiO: TiO2 ratio of 1: 4 exhibits a better photovoltaic performance than that of DSSC without magnetic field treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-55

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan, M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis: Nature Vol. 485 (2012), p.486.

Google Scholar

[3] I. Rutkowska, A. Andrearczyk, S. Zoladek, M. Goral, K. Darowicki, P. Kulesza: J. Solid State Electrochem. Vol. 15 (2011), p.2545.

DOI: 10.1007/s10008-011-1509-2

Google Scholar

[4] N. Cai, S.J. Moon, L. CeveyeHa, T. Moehl, R. HumphryeBaker, P. Wang, S.M. Zakeeruddin, M. Grätzel,: Nano Lett. Vol. 11 (2011), p.1452.

Google Scholar

[5] N. Robertson: Angew. Chem. Int. Ed. Vol. 45 (2006), p.2338.

Google Scholar

[6] S.R. Jang, K. Zhu, M.J. Ko, K. Kim, C. Kim, N.G. Park, A.J. Frank: ACS Nano Vol. 5 (2011), p.8267.

Google Scholar

[7] H. Han, W. Liu, J. Zhang, X. Zhao: Adv. Funct. Mater. Vol. 15 (2005), p. (1940).

Google Scholar

[8] J. Kim, J.K. Koh, B. Kim, S.H. Ahn, H. Ahn, D.Y. Ryu, J.H. Kim, E. Kim: Adv. Funct. Mater. Vol. 21 (2011), p.4633.

DOI: 10.1002/adfm.201101520

Google Scholar

[9] G. Wang, L. Wang, S. Zhuo, S. Fang, Y. Lin: Chem. Commun. Vol. (2011), p.2700.

Google Scholar

[10] D. Golodnitsky, E. Livshits, E. Peled: Macromol. Symp. Vol. 203 (2003), p.27.

Google Scholar

[11] W.J. Wang, X.Y. Guo, Y. Yang: Electrochim. Acta Vol. 56 (2011), p.7347.

Google Scholar

[12] Y. Yang, H. Hu, C.H. Zhou, S. Xu, B. Sebo, X.Z. Zhao: J. Power Sources Vol. 196 (2011), p.2410.

Google Scholar

[13] K.M. Kim, N.G. Park, K.S. Ryu, S.H. Chang: Electrochim. Acta Vol. 51 (2006), p.5636.

Google Scholar

[14] M.S. Martin-González, M.A. García, I. Lorite, J.L. CostaeKrämer, F. Rubioe-Marcos, N. Carmona, J.F. Fernándezc: J. Electrochem. Soc. Vol. 157 (2010), p.31.

Google Scholar

[15] Y. Yang, J. R. Cui, P.F. Yi, X. L. Zheng, X. Y. Guo, W. Y. Wang: J. Power Sources Vol. 248(2014), p.988.

Google Scholar

[16] D. Golodnitsky, E. Peled: Electrochim. Acta Vol. 45 (2000), p.1431.

Google Scholar

[17] D. Golodnitsky, E. Livshits, R. Kovarsky, E. Peled, S.H. Chung, S. Suarez, S.G. Greenbaum: Electrochem. Solid-State Lett. Vol. 7 (2004), p.412.

DOI: 10.1149/1.1803434

Google Scholar

[18] Y. Yang, P. F. Yi, C. H. Zhou, J.R. Cui, X.L. Zheng, S. Xiao, X.Y. i Guo, W.Y. Wang: Journal of Power Sources Vol. 243 (2013), p.919.

Google Scholar