Improving the Thermal Insulation Properties of Brick Products Using Chemical Additive Vuppor

Article Preview

Abstract:

The brick products which are nowadays produced for the building envelopes have to meet ever higher demands in terms of their thermal properties. These demands can be achieved not only by means of an appropriate geometric shape but also by means of producing a brick body with low thermal conductivity. Such thermal conductivity can be the result of application of various combustible pore-forming agents (such as wood sawdust and cellulose wastes). In this paper we outline the decrease of thermal conductivity by means of two modifications of the Vuppor chemical additive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

403-408

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Augusta, Stavební tepelná technika pro každého (Building thermal technology for everyone), I. díl. Ústav stavebních informací, Praha, (1991).

Google Scholar

[2] H. Schmidt, Mineralische Zuschlagstoffe (Mineral aggregates). Sprechsaal. 100 (1977) 150-152.

Google Scholar

[3] H. Schmidt, G. Piltz, Untersuchung des Einflusses von mineralischen Zusatzstoffen auf das Porengefüge und die Frostwiderstandsfähigkeit von Verblendziegeln (Investigation of the influence of mineral additives on the pore structure and the frost resistance of facing bricks). Sprechsaal. 110 (1997).

Google Scholar

[4] H. Schmidt, Möglichkeiten zur Verbesserung von Ziegelrohstoffen durch Zusätze (Possibilities for improvement of brick raw materials by additions). Zi Industrie International. 31 (1978) 500-517.

Google Scholar

[5] V. Lach, Význam mikrostruktury v silikátech (The importance of microstructure in silicates). Stavivo. 69 (1989) 430-136.

Google Scholar

[6] P. Kada, Untersuchung eines Thüringer Tones hinsichtlich seiner Eignung als Dachziegelrohstoff (Investigation of a Thuringian clay in regard to its suitability as a raw material for clay roofing tiles). Zi Industrie International 45 (1992).

Google Scholar

[7] R. Niemann, Perlit – ein neue sinterungsaktiver Mineralfüllstoff für die keramische Industrie (Perlite - a new mineral filler for the promotion of sintering in the ceramic industry). Zi Industrie International. 44 (1991) 342-345.

Google Scholar

[8] R. Sokolář, Effect of Calcite on the Brick body Closing. Interceram. 59 (2010) 123–127.

Google Scholar

[9] R. Sokolář, Deflocculation of Brick Clays for Clay roofing tile production. Zi Annual 2009. Bauverlag BV GmbH, (2009) 50-60.

Google Scholar

[10] M. Šveda, Čierne jadro v tehliarskych výrobkoch a využitie poznania vzájomných vzťahov medzi fyzikálnymi vlastnosťami črepu v praxi (Black core in brick products and the use of knowledge interrelationship between physical properties of brick body in practice). Silika. 15 (2005).

Google Scholar

[11] V. Lach, Keramika (Ceramics) II. Ediční středisko VUT Brno, (1989).

Google Scholar

[12] P.P. Budnikov, Technologie keramiky a žárovzdorného zboří (Technology of ceramics and including refractory goods). SNTL, Praha, (1960).

Google Scholar

[13] V. Hanykýř, J. Kutzendorfer, Technologie keramiky (Technology of ceramics). Vega, Hradec Králové, (2000).

Google Scholar

[14] L. Komora, M. Šveda, Zmes na výrobu keramiky alebo žiaruvzdorného materiálu (The mixture for the production of ceramic or refractory material). Patentový spis č. 279379. Úrad priemyselného vlastníctva SR (1998).

Google Scholar

[15] M. Šveda, J. Rybárik, Z. Gomolová, Verbesserung von Produktion und Produktionseigenschaften durch Vuppor (Improvemnet of production and product characteristics withVuppor). Zi Industrie International. 50 (1997) 100-107.

Google Scholar