[1]
S. Hrabovszky-Horváth, T. Pálvölgyi, T. Csoknyai, A. Talamon, Generalized Residential Building Typology for Urban Climate Change Mitigation and Adaptation Atrategies: The Case of Hungary, Energy and Buildings Journal, Vol. 62/2013, pp: 475-485.
DOI: 10.1016/j.enbuild.2013.03.011
Google Scholar
[2]
Hungarian Meteorological Service, Some characteristics of the climate of Hungary since (1901).
Google Scholar
[3]
HUNGARY'S RENEWABLE ENERGY UTILISATION ACTION PLAN on trends in the use of renewable energy sources until (2020).
Google Scholar
[4]
International Energy Agency: World Energy Outlook 2012, ISBN: 978-92-64-18084-0.
Google Scholar
[5]
A. Talamon, B. Hartmann, I. Vokony, Towards Zero Energy Buildings in Central Europe, (2011) World Energy Engineering Congress 2011, WEEC 2011, 2, pp.931-937.
Google Scholar
[6]
J. Botzheim, A. Csík, T. Csoknyai, A. Talamon, J. Balázs, M. Retek, Application of Evolutionary Algorithms for Energy Efficient Building Design, (2011).
Google Scholar
[7]
A. Talamon, Energy Efficiency Opportunities of the Buildings Built with Industrialized Technology in Central Europe, (2011) Proceedings of the 2011 3rd International Youth Conference on Energetics, IYCE 2011, art. no. 6028323.
Google Scholar
[8]
A. Talamon, T. Csoknyai, Monitoring of a Performance-oriented Policy Model for Retrofitting Panel Buildings, (2011) Environmental Engineering and Management Journal, 10 (9), pp.1355-1362.
DOI: 10.30638/eemj.2011.193
Google Scholar
[9]
A. Talamon, Energy Efficiency Opportunities of the Public Buildings in Central Europe, (2010) World Energy Engineering Congress 2010, WEEC 2010, 4, pp.2184-2187.
Google Scholar
[10]
A. Zöld: Implementation of the EPBD in Hungary: Status and planning, EPBD County reports, (2008).
Google Scholar
[11]
A. Talamon and T. Csoknyai, Monitoring of a close-to-zero energy building, Final Conference of the COST Action C 25, Innsbruck, Ausztria, Febr. (2011).
Google Scholar
[12]
S. Roaf, D. Crichton, F. Nicol, Adapting buildings and cities for climate change. Amsterdam: Architectural Press; (2005).
DOI: 10.4324/9780080961279
Google Scholar
[13]
S. Roberts, Effects of climate change on the built environment. Energy Policy 2008; 36: pp.4552-4557.
DOI: 10.1016/j.enpol.2008.09.012
Google Scholar
[14]
D. Ürge-Vorsatz, N. Eyre, P. Graham, C. Kornevall, LDD Harvey, M. Majumdar, et al. Energy end-use: Buildings. In: The global energy assessment: Toward a more sustainable future. Laxenburg, Austria: IIASA, Cambridge, United Kingdom and New York, USA: Cambridge University Press 2011; ch. 10.
DOI: 10.1017/cbo9780511793677.016
Google Scholar
[15]
D. Ürge-Vorsat, A Novikova, Potentials and costs of carbon dioxide mitigation in the world's buildings. Energy Policy 2008; 36 (2).
DOI: 10.1016/j.enpol.2007.10.009
Google Scholar
[16]
A. Talamon, T. Csoknyai, G. Szendrő, Towards Zero Energy Buildings in Central Europe - GIS-based Mapping Tool of Urban Energy Potential, Book: Fuelling the Future - Advances in Science and Technologies for Energy Generation, Transmission and Storage, ISBN 978-1-61233-558-2, pp.544-550, BrownWalker Press, Florida, USA, (2012).
Google Scholar