Density Functional Calculations on the Alkaline Hydrolysis of Phosphate Triesters

Article Preview

Abstract:

We have performed density functional theory calculations on the alkaline hydrolysis of diethyl p-chlorophenyl phosphate and triethyl phosphate in the gas phase and in solution. It is found that the two hydrolysis reactions proceed through associative mechanism. The second step of hydrolysis reaction has a very low energy barrier fro diethyl p-chlorophenyl phosphate. For triethyl phosphate, the free energy barrier for the second step is higher both in the gas phase and in solution, indication the second step is the rate-determining step. The free energies of all stationary points and the free energy barrier for all the processes in solution are higher than those in the gas phase. Our calculations provide a comprehensive data set and allow re-interpretation of previous experimental and theoretical studies, and new experiment is proposed to trace reactions both in the gas phase and in solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-332

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.C. Yang, J.A. Baker, J.R. Ward: Chem. ReV. 92 (1992) 1729-1743.

Google Scholar

[2] S. Lacorte, S.B. Largtiges, P. Garrigues, D. Barcelo: EnViron. Sci. Technol. 29 (1995) 431-438.

Google Scholar

[3] G. Menegon, M. Loos, H. Chaimovich: J. Phys. Chem. A 106 (2002) 9078-9084.

Google Scholar

[4] F.M. Raushel: Curr. Opin. Microbiol. 5 (2002) 288-295.

Google Scholar

[5] K. Musilek, M. Dolezal, F. Gunn-Moore, K. Kuca: Med. Res. Rev. 31 (2011) 548-575.

DOI: 10.1002/med.20192

Google Scholar

[6] (a) N. Usman, R. Cedergren: Trends Biochem. Sci. 17 (1992).

Google Scholar

[7] S.A. Ba-Saif, M.A. Waring, A. Williams: J. Am. Chem. Soc. 112 (1990) 8115-8120.

Google Scholar

[8] S.A. Ba-Saif, M.A. Waring, A. Williams: J. Chem. Soc, Perkin Trans. 2 (1991), 1653-1659.

Google Scholar

[9] F. Zheng, C.G. Zhan, R.L. Ornstein: J. Chem. Soc., Perkin Trans 2( 2001) 2355-2363.

Google Scholar

[10] N. Iché-Tarrat, J.C. Barthelat, D. Rinaldi, A. Vigroux: J. Phys. Chem. B 109 (2005) 22570-22580.

DOI: 10.1021/jp0550558

Google Scholar

[11] N. Tarrat: Journal of Molecular Structure: THEOCHEM, 941 (2010) 56-60.

Google Scholar

[12] M.A.S. Khana, T. Bandyopadhyayb, B. Gangulya: Journal of Molecular Graphics and Modelling. 34 (2012) 10-17.

Google Scholar

[13] F.T. Xia, K. Tian, H. Zhu: Computational and Theoretical Chemistry. 1017 (2013) 60-71.

Google Scholar

[14] S.C.L. Kamerlin, J. Florián, A. Warshel: ChemPhysChem 9 (2008) 1767-1773.

Google Scholar

[15] A.D. Becke: J. Chem. Phys. 98 (1993) 5648-5652.

Google Scholar

[16] R.G. Parr, W. Yang: Oxford University Press: Oxford, (1989).

Google Scholar

[17] C. Gonzalez, H.B. Schlegel: J. Chem. Phys. 90 (1989) 2154-2161.

Google Scholar

[18] C. Gonzalez, H.B. Schlege: J. Phys. Chem. 94 (1990) 5523-5527.

Google Scholar

[19] J. Tomasi, M. Persico: Chem. Rev. 94 (1994) 2027-(2094).

Google Scholar

[20] M.J. Frisch et al., Gaussian 03, Version D. 01, Gaussian, Inc., Pittsburgh, PA, (2005).

Google Scholar