Enhanced Cr(VI) Removal from Landfill Leachates Using Nanoscale Zero-Valent Iron

Article Preview

Abstract:

Nanoscale zero-valent iron modified by citric acid (m-NZVI) was used to remove hexavalent chromium (Cr (VI)) from landfill leachates. Citric acid was useful to enhance the dispersion of NZVI. The results demonstrated that the m-NZVI particles were uniform with a mean diameter of 45.6 nm and the specific surface area was about 22.8 m2/g. The Cr (VI) removal rates increased as an increase of the dosage of m-NZVI and the temperature but decreased as an increase of pH and the initial concentration of HA. Cr (VI) adsorption kinetics followed a pseudo-first-order rate expression and the reaction rate constants ranged from 0.05 to 0.32 min-1. X-ray photoelectron spectroscope (XPS) analysis confirmed that the Fe (III)-critic acid and/or Cr (III)-HA compounds were formed on the m-NZVI surface, which could hinder the formation of Fe (III)-Cr (III) compounds. It was also shown that removing Cr (VI) by m-NZVI was a chemical controlled and irreversible process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-18

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Deng, J. Hazard. Mater. 146, 334 (2007).

Google Scholar

[2] R. Ganigue, H. Lopez, M.D. Balaguer, and J. Colprim, Water Res. 41, 3317 (2007).

Google Scholar

[3] J.M. Lema, R. Mendez, and R. Blazquez, Water Air Soil Pollut. 40, 223 (1988).

Google Scholar

[4] M.L. Allan and L.E. Kukacka, Waste Manage. 15, 193 (1995).

Google Scholar

[5] J. Quinn, C. Geiger, C. Clausen, K. Brooks, C. Coon, S. O'Hara, T. Kruq, D. Major, W.S. Yoon, A. Gavaskar, and T. Holdworth, Environ. Sci. Technol. 39, 1309 (2005).

DOI: 10.1021/es0490018

Google Scholar

[6] S. Choe, Y.Y. Chang, K.Y. Hwang, and J. Khim, Chemosphere 41, 1307 (2000).

Google Scholar

[7] S.H. Joo, A.J. Feitz, and T.D. Waite, Environ. Sci. Technol. 38, 2242 (2004).

Google Scholar

[8] W. Wang, Z.H. Jin, T.L. Li, H. Zhang, and S. Gao, Chemosphere 65, 1396 (2006).

Google Scholar

[9] B.A. Manning, J.R. Kiser, H. Kwon, and S.R. Kanel, Environ. Sci. Technol. 41, 586 (2007).

Google Scholar

[10] N. Melitas, O. Chuffe-Moscoso, and J. Farrell, Environ. Sci. Technol. 35, 3948 (2001).

Google Scholar

[11] S.M. Ponder, J.C. Darab, and T.E. Mallouk, Environ. Sci. Technol. 34, 2564 (2000).

Google Scholar

[12] D. Karabelli, C. Uzum, T. Shahwan, A.E. Eroglu, T.B. Scott, K.R. Hallam, and I. Lieberwirth, Ind. Eng. Chem. Res. 47, 4758 (2008).

Google Scholar

[13] G. Kataby, T. Prozorov, Y. Koltypin, H. Cohen, C.N. Sukenik, A. Ulman, and A. Gedanken, Langmuir 13, 6151 (1997).

DOI: 10.1021/la960929q

Google Scholar

[14] E. Hajdu, E. Illes, E. Tombacz, and I. Borbath, Colloids surf. A 347, 104 (2009).

Google Scholar

[15] M.M. Ramos-Tejada, A. Ontiveros, J.L. Viota, and J.D.G. Duran, J. Colloid Interface Sci. 268, 85 (2003).

Google Scholar

[16] S.B. Mortazavi, B. Ramavandi, and G. Moussavi, Environ. Technol. 32, 251 (2011).

Google Scholar

[17] S.R. Kanel, J.M. Greneche, and H. Choi, Environ. Sci. Technol. 40, 2045 (2006).

Google Scholar

[18] S. Tufenkci, O. Turkmen, F. Sonmez, C. Erdinc, and S. Sensoy, Fresen. Environ. Bull. 15, 295 (2006).

Google Scholar

[19] X.Q. Li, J.S. Cao, and W.X. Zhang, Ind. Eng. Chem. Res. 47, 2131 (2008).

Google Scholar

[20] D. Mohan and C.U. Jr. Pittman, J. Hazard. Mater. 137, 762 (2006).

Google Scholar

[21] M. Mohapatra, K. Rout, B.K. Mohapatra, and S. Anand, J. Hazard. Mater. 166, 1506 (2009).

Google Scholar

[22] T. Hiemstra and W.H. Van-Riemsdijk, J. Colloid Interface Sci. 210, 182 (1999).

Google Scholar

[23] G. Dela-Rosa, J.R. Peralta-Videa, and J.L. Garden-Torresdey, J. Hazard. Mater. B 97, 207 (2003).

Google Scholar

[24] T.Z. Liu, P.H. Rao, M.S.H. Mak, P. Wang, and I.M.C. Lo, Water Res. 43, 2540 (2009).

Google Scholar

[25] H. Genc-Fuhrman, P. Wu, Y.S. Zhou, and A. Ledin, Desalination 226, 357 (2008).

Google Scholar

[26] J. Dries, L. Bastiaens, D. Springael, S. Kuypers, S.N. Aqathos, and L. Diels, Water Res. 39, 3531 (2005).

Google Scholar

[27] M.E. Morgada, I.K. Levy, V. Salomone, S.S. Farias, G. Lopez, and M.I. Litter, Catal. Today 143, 261 (2009).

Google Scholar

[28] F. He and D. Zhao, Environ. Sci. Technol. 39, 3314 (2005).

Google Scholar

[29] W.X. Zhang, C.B. Wang, and H.L. Lien, Catal. Today 40, 387 (1998).

Google Scholar

[30] A.P. Davis and V. Bhatnagar, Chemosphere 30, 243 (1995).

Google Scholar

[31] B.H. Gu, J. Schmitt, Z.H. Chen, L.Y. Liang, and J.F. McCarthy, Environ. Sci. Technol. 28, 38 (1994).

Google Scholar

[32] L.N. Shi, X. Zhang, and Z.L. Chen, Water Res. 45, 886 (2011).

Google Scholar