Synthesis and Characterization of Antimony-Doped Zinc Oxide Nanostructures via Microwave-Assisted Process

Article Preview

Abstract:

Sb-doped ZnO nanostructures have been deposited on to glass substrates via microwave-assisted process form Zn-Sb with different 1, 2 and 3 % by atomic weight. As the Sb/Zn mole ratio of the microwave oven materials increases, the Sb content doped in to the ZnO increases size, and the shape of the ZnO nanomaterials could be controlled via doping Sb. The structural and properties of undoped and doped ZnO were characterized by various techniques including by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. Finally, the controlled growth mechanism of ZnO nanomaterials was discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Huaming Yang, Yuehua Hu, Guanzhou Qiu, Journal of Materils Research Bulletin 37 (2002) 2453-2458.

Google Scholar

[2] T. Danjittisiri, Structures and Electrical Properties of Antimony-Doped Zinc Oxide, Materials Science, Chiang Mai University. (2008).

Google Scholar

[3] S. Bernik, J. Bernard, N. Daneu, A. Recnik, J. Am. Ceram. Soc., 90(10) 3239-3247 (2007).

Google Scholar

[4] A. Zankaria, Z. Rizwan, M. Hashim, A. H. Shaari, W. M. Yunus, Eur. Phys. J. Spec. Topic., 153 (2008), 33-35.

Google Scholar

[5] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, J. Cui, Journal of Physica E 41 (2008) 96-100.

DOI: 10.1016/j.physe.2008.06.018

Google Scholar

[6] T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi Y. Hatanaka, Phys. Stat. Sol. b 229 (2002) 152101.

Google Scholar

[7] S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Phys. Rev. Lett. 92 (2004) 155504.

Google Scholar

[8] X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, Y. Che, Appl. Surf. Sci. 2007, 253, 5067.

Google Scholar

[9] F. X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J. L. Liu, W.P. Beyermann, Appl. Phys. Lett. 2005, 87, 152101.

Google Scholar

[10] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, Appl. Phys. Lett. 2005, 87, 252102.

Google Scholar

[11] X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, Y. Che, Appl. Surf. Sci. 253 (2007) 5067.

Google Scholar

[12] P. Wang, N. Chen, Z. Yin, F. Yang, C. Peng, J. Cryst. Growth 290 (2006) 56.

Google Scholar

[13] C. Lin, Z. Xu, H. Peng, D. F. Sun, American Ceramic Society Bullentin, Vol. 86, No 1.

Google Scholar

[14] A. Escobedo-Morales, U. Pal, Curr. Appl. Phys. 11 (2011) 525-531.

Google Scholar

[15] A. N. Baranov, A. A. Kovalenko, O. V. Kononenko, E.V. Emelin, D. V. Mayveev, Inorganic Materials, 2103, Vol. 49, No. 2 pp.127-135.

Google Scholar

[16] D. H. Kim, N. G. Cho, K. S. Kim, S. Han, H. G. Kim, J. Electroceram (2009) 22: 82-86.

Google Scholar

[17] B. Cheng, B. Tian, W. Sun, Y. Xiao, S. Lei, Z. Wang, j. Phys. Chem. C2009, 113, 9638-9643.

Google Scholar

[18] O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, J. Phys. Chem. C 2010, 114, 12401-12408.

DOI: 10.1021/jp910263n

Google Scholar

[19] A. Omidi, A. Habibi-Yangieh, M. Pirhashemi, Applied Surface Science. 276 (2013) 468-475.

Google Scholar

[20] L. I. Berger, Semiconductor Materials, CRC, Boca Raton (1997).

Google Scholar

[21] B. Pal, P. K. Giri, J. Nanosci. Nanotechnol. Vol. 11, 1-8, (2011).

Google Scholar