Fatigue Performance of Semiconductor Strain Gauges in GFRP Laminate

Article Preview

Abstract:

Semiconductor strain gauges have good potential for embedded structural health monitoring (SHM) applications. Silicon mechanical and thermal properties are similar to glass fiber. In this paper the high cycle loading of specimens with embedded and surface mounted semiconductor strain gauges is conducted. The base material is glass fiber laminate. Two different matrixes are used: polyester and epoxy resins. Hygrothermal loading is introduced to weaken the sensor-matrix interface and to imitate real application conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-248

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Y. Li. Hypersensitivity of Strain-based Indicators for Structural Damage Identification: A Review. Mechanical Systems and Signal Processing, Vol. 24(3) ( 2010), p.653–664.

DOI: 10.1016/j.ymssp.2009.11.002

Google Scholar

[2] R. B. Watson, W. N. Sharape. Springer Handbook of Experimental Solid Mechanics: Bonded Electrical Resistance Strain Gages. Springer US, (2008).

DOI: 10.1007/978-0-387-30877-7_12

Google Scholar

[3] H. Choi, S. Choi, and H. Cha. Structural Health Monitoring System Based on Strain Gauge Enabled Wireless Sensor Nodes. 5th International Conference on Networked Sensing Systems 20 (2008) p.211–214.

DOI: 10.1109/inss.2008.4610888

Google Scholar

[4] A. L. Chateauminois, L. Vincent, B. Chabert and J.P. Soulier. Study of the Interfacial Degradation of a Glass-epoxy Composite During Hygrothermal Ageing Using Water Diffusion Measurements and Dynamic Mechanical Thermal Analysis. Polymer 35(22), (1994).

DOI: 10.1016/0032-3861(94)90730-7

Google Scholar

[5] S. Pavlidou, C. D Papaspyrides. The Effect of Hygrothermal History on Water Sorption and Interlaminar Shear Strength of Glass/polyester Composites with Different Interfacial Strength. Composites Part A: Applied Science and Manufacturing 34( 11) (2003).

DOI: 10.1016/s1359-835x(03)00214-8

Google Scholar

[6] J. Majak, M. Pohlak, M. Eerme, Application Of The Haar Wavelet Based Discretization Technique to Orthotropic Plate And Shell Problems, Mechanics of Composite Materials, 45(6) (2009), p.631 – 642.

DOI: 10.1007/s11029-010-9119-0

Google Scholar

[7] Karjust, K.; Pohlak, M.; Majak, J. Technology Route Planning of Large Composite Parts . International Journal of Material Forming, 3(1) (2010), p.631 – 634.

DOI: 10.1007/s12289-010-0849-2

Google Scholar

[8] J. Lellep, J. Majak, Nonlinear Constitutive Behavior of Orthotropic Materials, Mechanics of Composite Materials, 36(4) (2000), p.261 – 266.

DOI: 10.1007/bf02262803

Google Scholar

[9] M. Pohlak, J. Majak, K. Karjust, R. Küttner, Multicriteria Optimization of Large Composite Parts, Composite Structures, 92(9) (2010), p.2146 – 2152.

DOI: 10.1016/j.compstruct.2009.09.039

Google Scholar

[10] J. Kers, J. Majak, Modelling A New Composite From A Recycled GFRP, Mechanics of Composite Materials, 44(6) (2008), p.623 – 632.

DOI: 10.1007/s11029-009-9050-4

Google Scholar

[11] J. Kers, J, Majak, D. Goljandin, A. Gregor, M. Malmstein, K. Vilsaar, Extremes of Apparent and Tap Densities of Recovered GFRP Filler Materials, Composite Structures, 92(9) (2009), 2097 – 2101.

DOI: 10.1016/j.compstruct.2009.10.003

Google Scholar

[12] J. Majak, M. Pohlak, Decomposition method for solving optimal material orientation problems, Composite Structures, 92(8) (2010), p.1839 – 1845.

DOI: 10.1016/j.compstruct.2010.01.015

Google Scholar

[13] J. Majak, M. Pohlak, M., Optimal Material Orientation of Linear and Non-Linear Elastic 3D Anisotropic Materials, Meccanica 45(5) (2010), p.671 – 680.

DOI: 10.1007/s11012-009-9262-7

Google Scholar

[14] BCM Sensor Technologies bvba. Semiconductor strain gauges. 2013 http: /www. bcmsensor. com/sub-categories. php?secid=2.

Google Scholar