A Theoretical Formula for the Validity Limits of the Dipole Approximation for a Dielectric Mixture

Article Preview

Abstract:

A newly criterion for the validity limits of the dipole approximation for a dielectric mixture was presented, based on the comparison between the dipole approximation and the numerical solutions by the finite-element method (FEM). In terms of this criterion and the dipole-enhanced model, a simple theoretical formula for the validity limits was derived. This formula includes three variables: the dielectric mismatch, the volume fraction of particles and the precision. Its calculated results have a good agreement with the limits determined by the empirical method in the range of our interest, which indicates the theoretical formula is creditable. Using this formula, we can approximate the precision of the dipole approximation for an arbitrary dielectric mixture. And we found that the dipole approximation is acceptable with the precision equal to 30% when the dielectric mismatch is less than 2.3 (εi / εe 2.3) for the almost touching spheres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-80

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sihvola, A., & Jin Au Kong. Effective permittivity of dielectric mixtures, IEEE Trans. on Geos. Remote Sens. 26 (1988) 420-429.

DOI: 10.1109/36.3045

Google Scholar

[2] R. Tao and J. M Sun. Three-dimensional structure of induced electrorheological solid Phys. Rev Lett. 67(1991) 398-401.

DOI: 10.1103/physrevlett.67.398

Google Scholar

[3] Skirta, E. A., & N. A. Khizhnyak. Dielectric properties of bulk anisotropic structure and multiphase mixture. Electromagnetics. 13(1993) 389-405.

DOI: 10.1080/02726349308908360

Google Scholar

[4] T. C. Halsey and W. Toor. Structure of electrorheological fluids. Phys. Rev. Lett. 65 (1990) 2820-2823.

DOI: 10.1103/physrevlett.65.2820

Google Scholar

[5] R. Tao. Electric-field-induced phase transition in electrorheological fluids Phys. Rev. E 47(1993) 423-426.

DOI: 10.1103/physreve.47.423

Google Scholar

[6] Tinga, W. R., & W. A. G. Voss. Generalized approach to multiphase dielectric mixture theory. Journal of Applied Physics. 44(1973) 3897-3902.

DOI: 10.1063/1.1662868

Google Scholar

[7] T. J. Chen, R. N. Zitter and R. Tao. Laser diffraction determination of the crystalline structure of an electrorheological fluid. Phys. Rev. Lett. 68(1992) 2555-2558.

DOI: 10.1103/physrevlett.68.2555

Google Scholar

[8] D. J Klingenberg, F. Van Swol and C. F. Zukoski, Dynamic simulation of electrorheological suspensions. J. Chem. Phys. 91 (1989) 7888-7895.

DOI: 10.1063/1.457256

Google Scholar

[9] D. J Klingenberg, F. Van Swol and C. F. Zukoski, The small shear rate response of electrorheological suspensions. I. Simulation in the point–dipole limit. J. Chem. Phys. 94 (1991) 6160-6169.

DOI: 10.1063/1.460402

Google Scholar

[10] J. R. Melrose and D. M. Heyes. Simulations of electrorheological and particle mixture suspensions: Agglomerate and layer structures J. Chem. Phys. 98(1993) 5873-5886.

DOI: 10.1063/1.464879

Google Scholar

[11] Davis, L. C. Polarization force and conductivity effects in electroheological fluids. Journal of Applied Physics. 72(1992. ) 1334-1340.

Google Scholar

[12] T. B. Jones, M. Washizu. Multipolar dielectrophoretic and electrorotation theory. J. Electrostatics 37 (1995) 121-134.

DOI: 10.1016/0304-3886(96)00006-x

Google Scholar

[13] M. Washizu, T. B. Jones, Dielectrophoretic interaction of two spherical particles calculated by equivalent multipole-moment method, IEEE Trans. Ind. Appl. 32(1996) 233-242.

DOI: 10.1109/28.491470

Google Scholar

[14] Y. Chen, A. F. Sprecher, H. Conrad, Electrostatic particle-particle interactions in electrorheological fluids, J. Appl. Phys. 70 (1991) 6796-6803.

DOI: 10.1063/1.349855

Google Scholar

[15] Qizheng Ye, Jin Li, Hui Wan. The validity limits for the Dipole Approximation for a Dielectric Mixture. Electromagnetics. 24(2004) 143-152.

DOI: 10.1080/02726340490422591

Google Scholar

[16] K. Karkkainen, A. Sihvola and K. Nikoskinen. Effective permittivity of mixtures: Numerical validityation by the FDTD method. IEEE Trans. Geosci. Remote Sensing. 38(2000) 1303-1308.

DOI: 10.1109/36.843023

Google Scholar

[17] K. Karkkainen, A. Sihvola and K. Nikoskinen. Analysis of a three-dimensional dielectric mixture with finite difference method. IEEE Transaction on Geoscience and Remote Sensing. 39(2001) 1013-1018.

DOI: 10.1109/36.921419

Google Scholar

[18] Davis, L. C., Finite-element analysis of particle-particle forces in electrorheological fluids Appl. Phys. Lett. 60(1992) 319-321.

DOI: 10.1063/1.107441

Google Scholar

[19] Qizheng Ye, Jin Li, Jiacong Zhang, A dipole-enhanced approximation for a dielectric mixture, J. Electrostat. 61 (2004) 99-106.

Google Scholar

[20] R. Tao, Qi Jiang and H. K Sim. Finite-element analysis of electrostatic interactions in electrorheological fluids. Phys. Rev. E. 52(1995) 2727-2735.

DOI: 10.1103/physreve.52.2727

Google Scholar