Simulation of Ion Beam Irradiation Effects in Perovskite Oxide Memristors

Article Preview

Abstract:

Radiation effects of ion beams in perovskite oxide memristors are analyzedand linked to absorbed dose values, calculated from simulations of ion transport. Several ion species were used in simulations, chosen to represent certain commonly encountered radiation environments. Results indicate that considerable formation of oxygen ion - oxygen vacancy pairs, as well as advent of displaced rare earth and alkaline atoms, is to be expected. Oxygen vacancies can lead to a decrease or increase of active layer resistance, depending on applied voltage polarity. The loss of vacancies from the device is bound to impair the performance of the memristor. Calculated absorbed dose values in the memristor for various incident ion beams are typically on the order of several kGy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-95

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. L. Lewis, H.S. Lee, Architectural Evaluation of 3D Stacked RRAM Caches, IEEE International Conference on 3D System Integration 2009, 3DIC (2009) 1-4.

DOI: 10.1109/3dic.2009.5306582

Google Scholar

[2] F. Pan, Experimental and Simulation Study of Resistive Switches for Memory Applications, a Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in electrical Engineering and Computer Sciences, University of California, Berkeley, fall (2012).

Google Scholar

[3] W. M. Tong et al., IEEE Trans. Nucl. Sci. 57 (2010) 1640.

Google Scholar

[4] M. Vujisic, K. Stankovic, N. Marjanovic, P. Osmokrovic, IEEE Trans. Nucl. Sci. 57 (2010).

Google Scholar

[5] N. Marjanovic, M. Vujisic, K. Stankovic, D. Despotovic, P. Osmokrovic, Nucl. Technol. Radiat. 25 (2010) 120-125.

DOI: 10.2298/ntrp1002120m

Google Scholar

[6] I. Knezevic et al., Nucl. Technol. Radiat. 27 (2012) 290-296.

Google Scholar

[7] Sun-ae SEO et al., U.S. Patent 2013/0252395 A1 (2013).

Google Scholar

[8] J.J. Yang et al., Nat. Nanotechnol. 3 (2008) 429–433.

Google Scholar

[9] T. Driscoll et al., Science 325 (2009) 1518–1521.

Google Scholar

[10] T. Driscoll et al., Appl. Phys. Lett. 95 (2009) 043503.

Google Scholar

[11] I.H. Inoue et al., Phys. Rev. B 77 (2008) 0351.

Google Scholar

[12] D. Lee et al., Appl. Phys. Lett. 90 (2007) 122104.

Google Scholar

[13] S. Seo et al., Appl. Phys. Lett. 85 (2004) 5655.

Google Scholar

[14] H. Shima et al., Appl. Phys. Lett. 91 (2007) 012901.

Google Scholar

[15] J. Yao et al., Nano Lett. 10 (2010) 4105.

Google Scholar

[16] J. Yao et al., ACS NANO 3 (2009) 4122–4126.

Google Scholar

[17] K. Terabe et al., Nature 433 (2005) 47–50.

Google Scholar

[18] T. Tamura et al., Jpn. J. Appl. Phys. 45 (2006) L364–L366.

Google Scholar

[19] R. Waser and M. Aono, Nature Mater. 6 (2007) 833–840.

Google Scholar

[20] S.H. Jo and W. Lu, Nano Lett. 8 (2008) 392–397.

Google Scholar

[21] Y. Dong et al., Nano Lett. 8 (2008) 386–391.

Google Scholar

[22] S.H. Jo et al., Nano Lett. 9 (2009) 870–874.

Google Scholar

[23] Information on http: /www. itrs. net.

Google Scholar

[24] Y.B. Nian et al., Phys. Rev. Lett. 98 (2007) 146403.

Google Scholar

[25] M.J. Rozenberg et al., Phys. Rev. B 81 (2010) 115101.

Google Scholar

[26] W. W. Zhuang et al., IEDM Tech. Dig. (2002) 193.

Google Scholar

[27] D. Seong et al., IEDM Tech. Dig. (2009) 101.

Google Scholar

[28] M. Jo et al., VLSI (2010) 53.

Google Scholar

[29] Y.B. Nian et al., Phys. Rev. Lett. 98 (2007)  146403(1)-146403(4).

Google Scholar

[30] S.H. Huerth et al., Phys. Rev. B 67 (2003) 180506(R).

Google Scholar

[31] E. Dagotto et al., Physics Reports 344 (2001).

Google Scholar

[32] A.A.E. Stevens et al., Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, 24 (2006) 1933-(1940).

Google Scholar

[33] M. Vujisic, K. Stankovic, P. Osmokrovic, Applied Mathematical Modeling 35 (2011) 3128-3135.

Google Scholar

[34] K. Stankovic, M. Vujisic, D. Kovacevic, P. Osmokrovic, Measurement 44 (2011) 1713-1722.

Google Scholar

[35] Fengyan Zhang et al., U.S. Patent 7, 169, 637 B2 (2007).

Google Scholar

[36] M.B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

Google Scholar

[37] J.P. Joshi et al., J. Phys. Condens. Matter. 2869 (2004).

Google Scholar

[38] N. Marjanovic, M. Vujisic, K. Stankovic, P. Osmokrovic, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology 166 (2011) 1-7.

Google Scholar

[39] M. Vujisic, D. Matijasevic, E. Dolicanin, P. Osmokrović, Nucl. Technol. Radiat. 26 (2011) 254-260.

DOI: 10.2298/ntrp1103254v

Google Scholar

[40] JJ. Yang et al., Nat. Nanotechnol. 3 (2008) 429-433.

Google Scholar