Fabrication of Multiple Al Micro-Materials by Electromigration Using a Comb Pattern and a Conductive Passivation Film

Article Preview

Abstract:

Electromigration (EM) is the phenomenon of atomic diffusion in a metallic film with a high-density electron flow. Our group used EM to fabricate Al micro-materials. The EM technique can be used to fabricate micro-materials with a high aspect ratio, pure metal components, an arbitrary form, and a single-crystal structure. Recently, two micro-materials have been simultaneously fabricated using an array pattern consisting of parallel or series connections. However, multiple micro-materials have not been fabricated simultaneously thus far. In this study, a new comb sample pattern was used with a conductive passivation film to produce multiple Al micro-materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-40

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.B. Huntington, in: Diffusion in solids, edited by A.S. Nowick and J.J. Burton, Academic Press Inc., New York (1975), p.303.

Google Scholar

[2] I.A. Blech and H. Sello, in: Physics of failure in electronics, edited by T.S. Shilliday and J. Vaccaro, Rome Air Development Center, Rome (1966), p.496.

Google Scholar

[3] C.M. Tan and A. Roy: Mater. Sci. Eng., R Vol. 58 (2007), p.1.

Google Scholar

[4] H. Ceric and S. Selberherr: Mater. Sci. Eng., R Vol. 71 (2011), p.53.

Google Scholar

[5] M. Saka and R. Nakanishi: Mater. Lett. Vol. 60 (2006), p.2129.

Google Scholar

[6] H. Park, A.K.L. Lim, J. Park , A.P. Alivisatos and P.L. McEuen: Appl. Phys. Lett. Vol. 75 (1999), p.301.

Google Scholar

[7] D.E. Johnston, D.R. Strachan and A.T.C. Johnson: Nano Lett. Vol. 7 (2007), p.2774.

Google Scholar

[8] G.E. Begtrup, W. Gannett, T.D. Yuzvinsky, V.H. Crespi and A. Zettl: Nano Lett. Vol. 9 (2009), p.1835.

DOI: 10.1021/nl803800c

Google Scholar

[9] J. Sarkar, G.G. Khan and A. Basumallick: Bull. Mater. Sci. Vol. 30 (2007), p.271.

Google Scholar

[10] R. Dou and B. Derby: Scr. Mater. Vol. 59 (2008), p.151.

Google Scholar

[11] M. Saka, F. Yamaya and H. Tohmyoh: Scr. Mater. Vol. 56 (2007), p.1031.

Google Scholar

[12] G. Cao and D. Liu: Adv. Colloid Interface Sci. Vol. 136 (2008), p.45.

Google Scholar

[13] A. del Campo and E. Arzt: Chem. Rev. Vol. 108 (2008), p.911.

Google Scholar

[14] I.R. Musin and M.A. Filler: Nano Lett. Vol. 12 (2012), p.3363.

Google Scholar

[15] I.A. Blech, P.M. Petroff, K.L. Tai and V. Kumar: J. Cryst. Growth Vol. 32 (1975), p.161.

Google Scholar

[16] Y.J. Chen, J.H. Hsu and H.N. Lin: Nanotechnology Vol. 16 (2005), p.1112.

Google Scholar

[17] J.J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino and R. Varghese: J. Vac. Sci. Technol. B Vol. 23 (2005), p.3164.

Google Scholar

[18] C. Li, W. Ji, J. Chen and Z. Tao: Chem. Mater. Vol. 19 (2007) p.5812.

Google Scholar

[19] Y. Lu, H. Tohmyoh and M. Saka: J. Phys. D: Appl. Phys. Vol. 44 (2011), p.045501.

Google Scholar

[20] Y. Kimura and M. Saka: Mater. Lett. Vol. 116 (2014) p.278.

Google Scholar

[21] R. Zanma and M. Saka: Int. J. Mater. Struct. Integrity (2013), accepted.

Google Scholar

[22] H.B. Huntington and A.R. Grone: J. Phys. Chem. Solids Vol. 20 (1961), p.76.

Google Scholar