Hydrothermal Synthesis and Characterisation of Cu Doped TiO2 Nanotubes for Photocatalytic Degradation of Methyl Orange

Article Preview

Abstract:

Copper doped titanium dioxide (Cu-TiO2) nanotubes were synthesised by hydrothermal method. The samples were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and nitrogen gas adsorption. The photocatalytic activity of the copper doped titanium dioxide nanotubes was investigated by photodegradation of methyl orange under UV light. The structural and morphological studies showed that, the copper was incorporated into interstitial positions of the TiO2 lattice to form a new phase of TiO2 (hexagonal). The copper doped TiO2 nanotubes possessed high surface area and pore volume, results high photocatalytic activity for degradation of methyl orange (MO).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-130

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Adachi, Y. Murata, , M. Harada, Y. Yoshikawa: Chemistry Letters. Vol. 29 (2000), p.942.

Google Scholar

[2] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki: Current Opinion in Solid State and Materials Science, Vol. 11 (2007), p.3.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[3] L.L. Costa, A. G. S. Prado: Journal of Photochemistry and Photobiology A, Vol. 201 (2009), p.45.

Google Scholar

[4] S. Xu, J. Ng, A. Du, J. Liu, D.D. Sun: International Journal of Hydrogen Energy, Vol. 36 (2011), p.6538.

Google Scholar

[5] H. C. Zeng: Current Opinion in Chemical Engineering, Vol. 1 (2011), p.11.

Google Scholar

[6] J. M. Herrmann: Top. Catal. Vol. 34 (2005), p.49.

Google Scholar

[7] H. Tada, M. Fujishima, K. Hisayoshi: Chemical Society Reviews, Vol. 40 (2011), p.4232.

Google Scholar

[8] V. Stengl, V. Houskova, S. Bakardjieva, N. Murafa: Applied Materials and Interfaces, Vol. 2 (2010), p.575.

Google Scholar

[9] Y. Tang, G. Zhang, C. Liu, S. Luo, L. Chen, B. Wang, X. Xu: Journal of Hazardous Materials, Vol. 252– 253 (2013), p.115.

Google Scholar

[10] S. T. Martin, H. Herrmann, W. Choi, M. R. Hoffmann: Journal of the Chemical Society, Faraday Transactions, Vol. 90 (1994), p.3315.

Google Scholar

[11] B. Zhu, X. Zhang, S. Wang, S. Zhang, S. Wu, W. Huang: Microporous and Mesoporous Materials, Vol. 102 (2007), p.333.

Google Scholar

[12] L. R. Hou, C. Z. Yuan, Y. Peng: Journal of Hazardous Materials B., Vol. 139 (2007), p.310.

Google Scholar

[13] M.H. Razali, M.N. Ahmad-Fauzi, A.R. Mohamed, S. Sreekantan: Advanced Materials Research Vol. 772 (2013), p.365.

Google Scholar

[14] Y. H. Lu, B. Xu, A. H. Zhang, M. Yang, Y. P. Feng: J. Phys. Chem. C, Vol. 115 (2011), p.18042.

Google Scholar

[15] H. Feng, M. H. Zhang, L. E. Yu: Applied Catalysis A: General, Vol. l413–1414 (2012), p.238.

Google Scholar

[16] W. Choi, A. Termin, M. R. Hoffman: Journal of Physical Chemistry, Vol. 98 (1994), p.13669.

Google Scholar

[17] L. G. Devi, B. N. Murthy, S. G. Kumar: Materials Science and Engineering B, Vol. 166 (2010), p.1.

Google Scholar