Biogrowth of Escherichia coli in Bio-Ionic Media

Article Preview

Abstract:

The impact of development of ionic liquids (ILs) in biochemical appliances has attracted attention from many researchers to further investigate on the potential of ILs. Use of ILs has provided an effective alternative in the conversion of source of carbohydrate in woody plant into fermentable sugar for ethanol production. To investigate how the presence of ILs affects the fermentation process, fermentation by using E. coli were conducted in different fermentation conditions with the presence of ILs. The purpose of this research is to investigate microbial growth under the presence of ILs with various parameters. Ability of E. coli to grow in facultative condition has made these bacteria suitable for this research. In this research, the growths of E. coli in the presence of ILs were observed by shaken culture method for 24 hours. The E. coli was tested to grow in 5 % v/v [0.005, 20 % v/v [0.02, and 50 % v/v [0.05 of IL concentration ratios. The three types of ILs used for this research were 1-Ethyl-3-methylimidazolium Acetate [EMIM][A, 1-Butyl-3-methylimidazolium Chloride [BMIM][Cl] and 1-Allyl-3-methylimidazolium Chloride [AMIM][Cl]. The growth patterns of E. coli were also observed during the fermentation with shaking frequency of 250 rpm, 300 rpm and 350 rpm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-321

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Z. Liu, F. Wang, A.R. Stiles, C. Guo: ILs for Biofuel Production: Opportunities and Challenges: Applied Energy Vol. 92 (2012), p.406–414.

DOI: 10.1016/j.apenergy.2011.11.031

Google Scholar

[2] I. S Azmi, A. Azizan, R.M. Salleh, R. Jalil, T.E. Tengku Zainal Mulok, N. Idris, S. Ubong and A.L. Sihab: Biomaterials Availability Potential for Bioethanol Production: Advanced Materials Research Vol. 701 (2013), pp.243-248.

DOI: 10.4028/www.scientific.net/amr.701.243

Google Scholar

[3] M. Galbe and G. Zacchi: Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production: Biofuels Advanced in Biochemical Engineering/Biotechnology Vol. 108 (2007), Springer Verlag Berlin Heidelberg, pp.41-65.

DOI: 10.1007/10_2007_070

Google Scholar

[4] P. Kumar, D.M. Barrett, M.J. Delwiche and P. Stroeve: Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production: Ind. Eng. Chem. Res. Vol. 48 (8) (2009), pp.3713-3729.

DOI: 10.1021/ie801542g

Google Scholar

[5] Y.H.P. Zhang, S.Y. Ding, J.R. Mielenz, J.B. Cui, R.T. Elander, M. Laser, M.E. Himmel, J.R. McMillan, L.R. Lynd: Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions: Biotechnology and Bioengineering Vol. 97 (2) (2007).

DOI: 10.1002/bit.21386

Google Scholar

[6] M.T. García-Cubero, M. Coca, S. Bolado, G. González-Benito: Chemical Oxidation with Ozone as Pre-treatment of Lignocellulosic Materials for Bioethanol Production: Chemical Engineering Transactions Vol. 21 (2010), pp.1273-1278.

DOI: 10.1016/b978-0-12-802323-5.00018-9

Google Scholar

[7] N. Sarkar, S.K. Ghosh, S. Bannerjee, K. Aikat: Bioethanol Production from Agricultural Wastes: An overview: Renewable Energy Vol. 37 (1) (2012), pp.19-27.

DOI: 10.1016/j.renene.2011.06.045

Google Scholar

[8] A. Avci, B.C. Saha, G.J. Kennedy, M.A. Cotta: Dilute Sulfuric Acid Pretreatment of Corn Stover for Enzymatic Hydrolysis and Efficient Ethanol Production by Recombinant Escherichia Coli FBR5 without Detoxification: Bioresource Technology Vol. 142 (2013).

DOI: 10.1016/j.biortech.2013.05.002

Google Scholar

[9] I. Kim, B. Lee, J.Y. Park, S.A. Choi, J.I. Han: Effect of Nitric Acid on Pretreatment and Fermentation for Enhancing Ethanol Production of Rice Straw: Carbohydrate Polymers Vol. 99, (2014), pp.563-567.

DOI: 10.1016/j.carbpol.2013.08.092

Google Scholar

[10] J.C. López-Linares, C. Cara, M. Moya, E. Ruiz, E. Castro, I. Romero: Fermentable Sugar Production from Rapeseed Straw by Dilute Phosphoric Acid Pretreatment: Industrial Crops and Products Vol. 50 (2013), pp.525-531.

DOI: 10.1016/j.indcrop.2013.08.028

Google Scholar

[11] V.S.H. Suhardi, B. Prasai, D. Samaha, R. Boopathy: Evaluation of Pretreatment Methods for Lignocellulosic Ethanol Production from Energy Cane Variety L 79-1002: International Biodeterioration & Biodegradation Vol. 85 (2013), p.683–687.

DOI: 10.1016/j.ibiod.2013.03.021

Google Scholar

[12] A. Azizan, I.S. Azmi, N.S. Mohd Safaai, R. Mohd Salleh, W.S.A. Wan Omar, T.E. Tengku Zainal Mulok, N. Idris, Ubong, A.L. Sihab: Green Engineering Technology in Bioethanol. IEEE Symposium on Humanities, Science and Engineering Research SHUSER. Penang, June (2013).

DOI: 10.4028/www.scientific.net/amr.701.243

Google Scholar

[13] L.Q. Jiang, Z. Fang, X.K. Li, J. Lu, S.P. Fan: Combination of Dilute Acid and Ionic Liquid Pretreatments of Sugarcane Bagasse for Glucose by Enzymatic Hydrolysis: Process Biochemistry Vol. 48 (12) (2013), p.1942-(1946).

DOI: 10.1016/j.procbio.2013.09.012

Google Scholar

[14] S.M. Lee, W.J. Chang, A.R. Choi, Y.M. Koo: Influence of Ionic Liquid on Growth of Escherichia Coli: Korean Journal of Chemical Engineering Vol. 22 (5) (2005), pp.687-690.

DOI: 10.1007/bf02705783

Google Scholar

[15] H. Giese, A. Azizan, A. Kuemmel, A. Liao, C.P. Peter, J.A. Fonseca, R. Hermann, T.M. Duarte, J. Buechs: Liquid Films on Shake Flask Wall explain increasing maximum oxygen transfer capacities with elevating viscosity: Biotechnology and Bioengineering Vol. 111 (2) (2014).

DOI: 10.1002/bit.25015

Google Scholar

[16] M. Losen, B. Froelich, M. Pohl, J. Beuchs: Effect of Oxygen Limitation and Medium Composition on Escherichia Coli Fermentation in Shake-Flask Culture: Biotechnology Progress Vol. 20 (4) (2008), pp.1062-1068.

Google Scholar