Synthesized Hydroxyapatite Powder from Clamshell via Chemical Precipitation Method

Article Preview

Abstract:

Hydroxyapatite (HAp) is a kind of bioceramic based material that has been used extensively in many medical applications. Owing to nearly similar mineral contents to natural bone, the material has been accepted as an implant in order to improve the osteointegration with the bone tissue. In this work, an alternative processing route from waste materials, namely clamshell in producing HAp powder is presented. The effects of processing temperatures, ranging from 750°C to 950°C and pH values, ranging from 6.5 to 8.5 on the synthesized HAp prepared via chemical precipitation method were investigated. From the XRD, FTIR and EDX results, it was observed that the lowest pH value of 6.5 with the temperature of 850°C is the optimum parameters to synthesize HAp.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-76

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Prabakaran& S. Rajeswari, Spectrochimica Acta Part A, Vol 74, (2009) p.1127–1134.

Google Scholar

[2] Z. Cui, B. Nelson, Y. Y. Peng, K. Li, S. Pilla, W. J. Li, L. S. Turng & C. Shen, Materials Science and Engineering C, Vol 34, (2012), p.1674–1681.

Google Scholar

[3] A. S. Brydone, D. Meek & S Maclaine, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol 224, (2010), p.1329.

Google Scholar

[4] A. Afshar, M. Ghorbani, N. Ehsani, M.R. Saeria & C.C. Sorrell, Materials and Design, Vol 24, (2003), p.197–202.

Google Scholar

[5] G. S. Kumar, A. Thamizhavel & E.K. Girija, Materials Letters, Vol 76, (2012), p.198–200.

Google Scholar

[6] S. C. Wu, H. K. Tsou, H. C. Hsu, S. K. Hsu, S. P. Liou, & W. F. Ho, Ceramics International http: /dx. doi. org/10. 1016/ j. ceramint. 2013. 03. 094 (2013).

Google Scholar

[7] S. M. H. W. Syed Mohd Hassan, A. Amir, R. A. Arman, S. B. Mohd Latif, M. A. H. Hashim & M. H. Ismail, Vol 651, (2013), pp.216-220.

Google Scholar

[8] G. Gergely, F. We´ber , I. Luka´cs, A. L. To´th, Z. E. Horva´th, J. Miha´ly, C. Bala´zsi, Ceramic International, Vol 36, (2010), pp.803-806.

Google Scholar

[9] T. Li & K. Zeng, Structural Biology, Vol 180, (2012), pp.73-83.

Google Scholar

[10] M. Mittal, S. Prakash, S.K. Nath & P. K. Sapra, National Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering (2010).

Google Scholar

[11] H. Zhou & J. Lee, Acta Biomaterialia, Vol 7, (2011), p.2769–2781.

Google Scholar

[12] C. P. Sim, P. Cheang, M. H. Liang & K.A. Khor, Materials Processing Technology, Vol 69, (1997), pp.75-78.

Google Scholar

[13] D.L. Goloshchapov, V.M. Kashkarov, N.A. Rumyantseva, P.V. Seredin, A.S. Lenshin, B.L. Agapov & E.P. Domashevskaya, Ceramics International, Vol 39, (2013), p.4539–4549.

DOI: 10.1016/j.ceramint.2012.11.050

Google Scholar