Measuring of Low Frequency Internal Friction in Solids

Article Preview

Abstract:

The principles and apparatus of measuring low frequency internal friction are described in this paper. The low frequency internal friction apparatus have been evidently improved in automation and functions since the Ke,s pendulum was invented in 1947. The degree of automation of the internal friction apparatus is elevated and the functions of the apparatus are increased/ strengthened. The resolution of internal friction is increased. The accuracy of strain and frequency is also enhanced. The scope of measuring parameters such as temperature, strain, frequency and so on is enlarged.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 912-914)

Pages:

1517-1520

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. S. Ke: Foundation of Internal Friction Theory in Solids (Grain-boundary Relaxation and Grain-boundary Structure), Academic Press, Beijing (2000).

Google Scholar

[2] E. D. Brandner, B. S. Shivaram, A. Munier: Meas. Sci. Technol., Vol. 6 (1995), 310-313.

Google Scholar

[3] A. S. Nowick and B. S. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, Now York and London (1972).

Google Scholar

[4] D. Feng, et al: in: Metal Physics, Vol. 3 (Mechanical properties of Metals), Academic Press, Beijing (2000).

Google Scholar

[5] T. S. Ke: Advances in Mechanics, Vol. 24 (1994), 336-350.

Google Scholar

[6] Z. G. Zhu, C. H. Gu, F. K. Xie, et al: Physics, Vol. 14 (1985), 489-490.

Google Scholar

[7] Y. D. Wen, L. T. Wang, J. J. Du: Physics, Vol. 15 (1986), 109-110.

Google Scholar

[8] Z. G. Zhu, X. Zhou, G. T. Fei: Chinese Journal of Scientific Instrument, Vol. 9 (1988), 396-401.

Google Scholar

[9] J. Wang, Z. G. Zhu, G. T. Fei: Analysis and Testing Technology and Instruments, Vol. 2 (1996), 42-44.

Google Scholar

[10] H. Zhou, Q. P. Kong: Physical Testing and Chemical Analysis Part A: Physical Testing, Vol. 3 (1997), 29-30.

Google Scholar

[11] Y. Dai, Q. P. Kong, Q. H. Ni, Z. X. Zhou: Physics, Vol. 16 (1987), 293-294.

Google Scholar

[12] X. D. Ding, K. Gong, et al: Journal of Sun Yat-sen University, Vol. 39 (2000), 30-34.

Google Scholar

[13] Q. F. Fang, X. P. Wang, X. B. Wu, et al: Physics, Vol. 40 (2011), 785-793.

Google Scholar

[14] Z. G. Zhu, X. B. Wu, et al: Journal of Shanghai Jiaotong University, Vol. 44 (2010), 669-673.

Google Scholar

[15] J. C. Swartz: Rev. Sci. Instrum, Vol. 32 (1961), 335-338.

Google Scholar

[16] J. E. Harbottle: Journal of Physics E: Scientific Instruments, Vol. 3 (1970), 49-54.

Google Scholar

[17] D. E. Barrow, Z. C. Szkopiak: Journal of physics E: Scientific Instruments, Vol. 5 (1972), 915-919.

Google Scholar

[18] J. Woirgard , Y. Sarrazin, H. Chaumet: Rev. Sci. Instrum., Vol. 48 (1977), 1322-1325.

Google Scholar

[19] E. D. Brandner, B. S. Shivaram, A. Munier: Meas. Sci. Technol., Vol. 6 (1995), 310-313.

Google Scholar

[20] T. T. Gribb, R. F. Cooper: Review of Scientific Instrument, Vol. 69 (1998), 559-564.

Google Scholar

[21] J. M. San Juan, I. Gallegoy, M. L. Nó: Rev. Metal. Madrid, Vol. 37 (2001), 209-214.

Google Scholar

[22] T. Tondellier, J. Woirgard, J. L. Demenet: Defects and Diffusion in Ceramics, Vol. 206-207 (2002), 175-178.

DOI: 10.4028/www.scientific.net/ddf.206-207.175

Google Scholar

[23] I. Gutiérrez-urrutia, M. L. Nó: Mater. Sci. Eng. A, Vol. 37 (2004), 435-439.

Google Scholar