[1]
SHIN H S, SHIN D W, SUN Y K, Synthesis and electrochemical properties of Li[Ni0. 4Co0. 2Mn(0. 4-x)Mgx]O2-yFy via a carbonate co-precipitation , Currrent Applied Physics, 2006, 6(S1): e12-e16.
DOI: 10.1016/j.cap.2006.01.001
Google Scholar
[2]
Liu Z L, Yu A S, Lee J Y, Synthesis and Characterization of LiNi1−x−yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries , J. Power Sources, 1999, 81/82: 416−419.
DOI: 10.1016/s0378-7753(99)00221-9
Google Scholar
[3]
Kim M H, Shin H S, Shin D, et al, Synthesis and Electrochemical Properties of Li(Ni0. 8Co0. 1Mn0. 1)O2 and Li(Ni0. 8Co0. 2)O2 via Co-precipitation , J. Power Sources, 2006, 159(2): 1328−1333.
DOI: 10.1016/j.jpowsour.2005.11.083
Google Scholar
[4]
Sun Y K, Myung S T, Kim M H, et al, Synthesis and Characterization of Li[(Ni0. 8Co0. 1Mn0. 1)0. 8(Ni0. 5Mn0. 5)0. 2]O2 with the Microscale Core Shell Structure as the Positive Electrode Material for Lithium Batteries , Am. Chem. Soc., 2005, 127(38): 13411−13418.
DOI: 10.1021/ja053675g
Google Scholar
[5]
ZHONG Wei-pan, LU Lei, YANG Hui , Characterization of LiNi0. 8Co0. 1Mn0. 1O2 synthesized via co-precipitation with different precipitants, 2012, 43(11): 1425-1430.
Google Scholar
[6]
CHEN Wei, LI Xin-hai, WANG Zhi-xing, et al, Influence of feeding rate on performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode materials prepared by co-precipitation, The Chinese Journal of Nonferrous Metals, 2012, 22(7): 1956-(1962).
Google Scholar
[7]
Lu Z.H., MacNeil D.D., Dahn J. R, Layered Cathode Materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for Lithium-Ion batteries, Electrochem. Solid-State Letters, 2011, 4(11): A191-A194.
DOI: 10.1149/1.1407994
Google Scholar
[8]
Sun Y.C., Ouyang C.Y., Wang Z.X., Huang X.J., Chen L. Q, Effect of Co Content on Rate Performance of LiMn0. 5-xCo2xNi0. 5-xO2 Cathode Materials for Lithium-Ion Batteries,J. Electrochem. Soc. 2004, 151(4): A504-A508.
DOI: 10.1149/1.1647574
Google Scholar
[9]
WANG Jie-xi, LI Xin-hai, WANG Zhi-xing, et al, Effect of pH value on performance of Ni0. 8Co0. 1Mn0. 1(OH)2 and LiNi0. 8Co0. 1Mn0. 1O2 synthesized via fast co-precipitation process, The Chinese Journal of Nonferrous Metals, 2011, 21(9): 2175-2181.
DOI: 10.1016/j.etran.2021.100105
Google Scholar
[10]
WANG Xi-min, Synthesis and Electrochemical Performance research of LiNi0. 8Co0. 1Mn0. 1O2 lithium ion battery cathode materials , Xiangtan: Xiangtan University, (2007).
DOI: 10.1016/j.etran.2021.100105
Google Scholar
[11]
PENG Mei-xun , Formation mechanism of the microstructures and the electrochemical performance for spherical nickel hydroxide, Changsha: Central South University, (2004).
Google Scholar
[12]
YING Jie-Rong, GAO Jian, JIANG Chang-Yin, et al, Research and Development of Preparing Spherical Cathode Materials for Lithium Ion Batteries by Controlled Crystallization Method, Journal of Inorganic Materials, 2006, 21(2): 291-297.
Google Scholar
[13]
Whitfield P S, Davidson I J, Cranswick L M D, et al, Investigation of Possible Superstructure and Cation Disorder in the Lithium Battery Cathode Materials LiNi1/3Mn1/3Co1/3O2 . Using Neturon and Anomalous Dispersion Powder Diffraction , Solid State Ionics, 2005, 176(5/6): 463−471.
DOI: 10.1016/j.ssi.2004.07.066
Google Scholar
[14]
Gao Y, Yakovleva M, Wang H H, et al, Method of Producing Layered Lithium Metal Oxides Free of Localized Cubic Spinel-like Structural Phase, US Pat.: 6620400, 2003−09−16.
Google Scholar
[15]
A R Naghash, J Y Lee, Lithium nickel oxyfluoride (Li1-zNi1+zFyO2-y) and lithium magnesium nickel oxide (L1-z(MgxNi1-x)1-zO2) cathodes for lithium rechargeable batteries , Electrochimica Acta, 2001, 46(7): 941-951.
DOI: 10.1016/s0013-4686(01)00452-2
Google Scholar