Influence of Ni/Cr Substitution for Mn on Crystal Structure and Electrochemical Performance of LiMn2O4 Cathode Materials

Article Preview

Abstract:

LiMn2O4 and LiNi0.5-xCr2xMn1.5-xO4(x=0, 0.05) cathode materials of spinel structure were prepared via co-precipitation derived precursors and subsequent high-temperature sintering between the precursors and LiOH. XRD, SEM and electrochemical tests were performed for the characterization of the as-prepared samples. The results show that the substitutions of Ni and Cr for Mn can not prevent Mn2+from being oxidized into Mn3+ in solution process, yet do not change their final crystal structures of spinel with or without substitution, and after substitution the first charge and discharge capacities decrease but its cyclic capability is improved significantly, especially for the Ni and Cr co-substitution

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 912-914)

Pages:

204-209

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Goodenough J. B, Kim. Y, Challenges for rechargeable Li batteries, Chemistry of Materials, 2010, 22: 587-603.

Google Scholar

[2] M. M. Mackery , Manganese for lithium batteries, Progress Solid State Chemistry, 1997, 25: l-71.

Google Scholar

[3] X.Q. Wang, H. Nakamura, M. Yoshio, Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries, J. Power Sources, 2002, 110: 19-26.

DOI: 10.1016/s0378-7753(02)00213-6

Google Scholar

[4] J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature, J. Power Sources, 2002, 112: 222–230.

DOI: 10.1016/s0378-7753(02)00363-4

Google Scholar

[5] Lee.J. H, Hong. J. K, Jang. D. H, Y-K. Sun, Seung M. O , Degradation mechanisms in doped spinels of LiM0. 05 Mn1. 95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries, J. Power Sources, 2000 , 89: 7–14.

DOI: 10.1016/s0378-7753(00)00375-x

Google Scholar

[6] K-S. Lee, S-T. Myung, H-J. Bang, S-K. Chung, Y-K. Sun , Co-precipitation synthesis of spherical Li1. 05 M0. 05 Mn1. 9O4(M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode, Electrochimica Acta, 2005 , 2: 5201–5206.

DOI: 10.1016/j.electacta.2007.02.029

Google Scholar

[7] X.P. Qiu , X.G. Sun, W.C. Shen, N.P. Chen, Spine1 Li1+x, Mn2O4 synthesized by coprecipitation as cathodes for lithium-ion batteries, Solid State lonics, 1997, 93: 335-339.

DOI: 10.1016/s0167-2738(96)00540-1

Google Scholar

[8] A. de Kock, E. Ferg , R.J. Gummow, The effect of multivalent cation dopants on lithium manganese spine1 cathodes, J. Power Sources, 1998, 70: 247-252.

DOI: 10.1016/s0378-7753(97)02681-5

Google Scholar

[9] G. G. Amatucci, N. Pereira, T. Zheng, I. Plitz, J.M. Tarascon, Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution, J. Power Sources, 1999, 81–82: 39–43.

DOI: 10.1016/s0378-7753(99)00186-x

Google Scholar

[10] A. Manthiram, Materials challenges and opportunities of lithium ion batteries, J. Phys. Chem. Lett , 2011, 2: 176–184.

Google Scholar

[11] D-J. Lee, K-S. Lee, S-T. Myung, H. Yashiro, Y-K. Sun, Improvement of electrochemical properties of Li1. 1Al0. 05Mn1. 85O4achieved by an AlF3 coating, J. Power Sources, 2011, 196: 1353–1357.

DOI: 10.1016/j.jpowsour.2010.09.040

Google Scholar

[12] Z-S Zheng , Z.L. Tang, Z.T. Zhang, W.C. Shen, Y.H. Lin, Surface modification of Li1. 03Mn1. 97O4 spinels for improved capacity retention, Solid State Ionics, 2002, 148: 317– 321.

DOI: 10.1016/s0167-2738(02)00068-1

Google Scholar

[13] J. Cabana, M. Casas-Cabanas, et. al, Composition-structure relationships in the Li-Ion battery electrode material LiNi0. 5Mn1. 5O4, Chemistry Materials , 2012, 24: 2952−2964.

DOI: 10.1021/cm301148d

Google Scholar

[14] T. Yoon, S. Park, J. Mun, J-H Ryu, W. Choi, Y-S Kang, et. al, Failure mechanisms of LiNi0. 5Mn1. 5O4 electrode at elevated temperature. J. Power Sources, 2012, 215: 312–316.

DOI: 10.1016/j.jpowsour.2012.04.103

Google Scholar

[15] S. B. Park, W. S. Eom , H. Jang, et al, Electrochemical properties of LiNi0. 5Mn1. 5O4 cathode after Cr doping, J. Power Sources, 2006, 159: 679–684.

DOI: 10.1016/j.jpowsour.2005.10.099

Google Scholar

[16] Y-K. Sun, S-W. Oh, C-S. Yoon, et al, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0. 5Mn1. 5O4-x spinel material in 3V region, J. Power Sources, 2006, 161(1): 19-26.

DOI: 10.1016/j.jpowsour.2006.03.085

Google Scholar

[17] T. A. Arunkumar, A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiNi0. 5Mn1. 5O4, Electrochimica Acta , 2005, 50: 5568–5572.

DOI: 10.1016/j.electacta.2005.03.033

Google Scholar