[1]
Goodenough J. B, Kim. Y, Challenges for rechargeable Li batteries, Chemistry of Materials, 2010, 22: 587-603.
Google Scholar
[2]
M. M. Mackery , Manganese for lithium batteries, Progress Solid State Chemistry, 1997, 25: l-71.
Google Scholar
[3]
X.Q. Wang, H. Nakamura, M. Yoshio, Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries, J. Power Sources, 2002, 110: 19-26.
DOI: 10.1016/s0378-7753(02)00213-6
Google Scholar
[4]
J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature, J. Power Sources, 2002, 112: 222–230.
DOI: 10.1016/s0378-7753(02)00363-4
Google Scholar
[5]
Lee.J. H, Hong. J. K, Jang. D. H, Y-K. Sun, Seung M. O , Degradation mechanisms in doped spinels of LiM0. 05 Mn1. 95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries, J. Power Sources, 2000 , 89: 7–14.
DOI: 10.1016/s0378-7753(00)00375-x
Google Scholar
[6]
K-S. Lee, S-T. Myung, H-J. Bang, S-K. Chung, Y-K. Sun , Co-precipitation synthesis of spherical Li1. 05 M0. 05 Mn1. 9O4(M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode, Electrochimica Acta, 2005 , 2: 5201–5206.
DOI: 10.1016/j.electacta.2007.02.029
Google Scholar
[7]
X.P. Qiu , X.G. Sun, W.C. Shen, N.P. Chen, Spine1 Li1+x, Mn2O4 synthesized by coprecipitation as cathodes for lithium-ion batteries, Solid State lonics, 1997, 93: 335-339.
DOI: 10.1016/s0167-2738(96)00540-1
Google Scholar
[8]
A. de Kock, E. Ferg , R.J. Gummow, The effect of multivalent cation dopants on lithium manganese spine1 cathodes, J. Power Sources, 1998, 70: 247-252.
DOI: 10.1016/s0378-7753(97)02681-5
Google Scholar
[9]
G. G. Amatucci, N. Pereira, T. Zheng, I. Plitz, J.M. Tarascon, Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution, J. Power Sources, 1999, 81–82: 39–43.
DOI: 10.1016/s0378-7753(99)00186-x
Google Scholar
[10]
A. Manthiram, Materials challenges and opportunities of lithium ion batteries, J. Phys. Chem. Lett , 2011, 2: 176–184.
Google Scholar
[11]
D-J. Lee, K-S. Lee, S-T. Myung, H. Yashiro, Y-K. Sun, Improvement of electrochemical properties of Li1. 1Al0. 05Mn1. 85O4achieved by an AlF3 coating, J. Power Sources, 2011, 196: 1353–1357.
DOI: 10.1016/j.jpowsour.2010.09.040
Google Scholar
[12]
Z-S Zheng , Z.L. Tang, Z.T. Zhang, W.C. Shen, Y.H. Lin, Surface modification of Li1. 03Mn1. 97O4 spinels for improved capacity retention, Solid State Ionics, 2002, 148: 317– 321.
DOI: 10.1016/s0167-2738(02)00068-1
Google Scholar
[13]
J. Cabana, M. Casas-Cabanas, et. al, Composition-structure relationships in the Li-Ion battery electrode material LiNi0. 5Mn1. 5O4, Chemistry Materials , 2012, 24: 2952−2964.
DOI: 10.1021/cm301148d
Google Scholar
[14]
T. Yoon, S. Park, J. Mun, J-H Ryu, W. Choi, Y-S Kang, et. al, Failure mechanisms of LiNi0. 5Mn1. 5O4 electrode at elevated temperature. J. Power Sources, 2012, 215: 312–316.
DOI: 10.1016/j.jpowsour.2012.04.103
Google Scholar
[15]
S. B. Park, W. S. Eom , H. Jang, et al, Electrochemical properties of LiNi0. 5Mn1. 5O4 cathode after Cr doping, J. Power Sources, 2006, 159: 679–684.
DOI: 10.1016/j.jpowsour.2005.10.099
Google Scholar
[16]
Y-K. Sun, S-W. Oh, C-S. Yoon, et al, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0. 5Mn1. 5O4-x spinel material in 3V region, J. Power Sources, 2006, 161(1): 19-26.
DOI: 10.1016/j.jpowsour.2006.03.085
Google Scholar
[17]
T. A. Arunkumar, A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiNi0. 5Mn1. 5O4, Electrochimica Acta , 2005, 50: 5568–5572.
DOI: 10.1016/j.electacta.2005.03.033
Google Scholar