Mathematical Morphology Applied to the Cross Section of Microscopic Plant Fiber for Characterization of Geometric Parameters: A Case Study of “Rhektophyllum camerunense

Article Preview

Abstract:

In this article, classification methods using mathematical morphology are used to generate the internal and external contours of an image of a natural fiber, "Rhektophyllum camerunense" taken by an epifluorescent electron microscope. The presence of impulse noise in the captured image and the presence of an almost identical texture characterized by the heterogeneity of the basic cells whose microstructure composes the fiber, make it difficult to use conventional methods of image analysis. As the fiber of R. camerunense consists of basic cells interconnected by cellulosic hemicellulose, their delineation is possible by detecting the contour of the lumens. To distinguish the regions of basic cells, binarization is performed after application of a 3 × 3 median filter. The results obtained allow development of a method for calculating the geometrical parameters of the cross section of the fiber R. camerunense and generation of the basic structure of the cross section by Voronoi diagram.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 912-914)

Pages:

217-226

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. Bruce: Phil. Trans. R. Soc. Lond. B. Vol. 358 (2003), pp.1437-1444.

Google Scholar

[2] R. C. Neagu, E. K. Gamstedt, S. F. Burdage and M. Lindstrom: Wood Mater. Sci. Eng. Vol. 1 (2006), pp.146-170.

Google Scholar

[3] A. Beakou, J. A. Atangana, R. Ntenga, L. O. Ayina and J. Lepetit: Compos. Part A. Appl. Sci. Manuf. Vol. 39 (2008), pp.67-74.

Google Scholar

[4] C. Ntéppé-Nyame: Adansonia Vol. 20 (1981), p.451–457.

Google Scholar

[5] R. Ntenga and A. Beakou: Comput. Mater. Sci. Vol. 50 (2011), pp.1442-1449.

Google Scholar

[6] S. Mehmet and S. Bülent: J. Electron. Imaging Vol. 13 (2004), p.146–165.

Google Scholar

[7] P. K. Sahoo, Soltani, A. K. C. Wong and Y. C. Chen: Comp. Vis. Graph. Image Process. Vol. 41 (1988), pp.233-260.

Google Scholar

[8] P. K. Saha and J. K. Udupa: IEEE Trans. Pattern Anal. Mach. Intell. Vol. 23 (2001), p.689–706.

Google Scholar

[9] M. R. Gupta, N. P. Jacobson and E. K. Gracia: Pattern Recognit. Vol. 40 (2007), pp.389-397.

Google Scholar

[10] J. Serra: Image analysis and mathematical morphology (Academic Press, London 1982).

Google Scholar

[11] G. Matheron: Random set and integral geometry (Wiley, London 1975).

Google Scholar

[12] L. Najman and H. Talbot: Mathematical morphology: from theory to applications (ISTE-Wiley, New Jersey 2010).

Google Scholar

[13] R. M. Haralick, S. R. Sternberg and X. Zhuang: IEEE Trans. Pattern Anal. and Mach. Intell. Vol. 9 (1987), pp.532-550.

DOI: 10.1109/tpami.1987.4767941

Google Scholar

[14] T. F. N. Kanaa, G. Mercier and E. Tonye: IEEE Ocean. Eur. Vol. 1 (2005), pp.686-691.

Google Scholar

[15] F. Y. Shih: Image processing and pattern recognition: Fundamentals and techniques (Wiley, New Jersey, 2010).

Google Scholar

[16] K. Kpalma and J. Ronsom: Pattern Recognit. Lett. Vol. 27 (2006), pp.1545-1559.

Google Scholar

[17] P. H. Bolon, J. M. Chassery, J. P. Cocquerex, C. Graffigne, A. Montanvert, S. Phillipp, R. Zeboudj and J. Zerubia, Image analysis: filtering and segmentation, Paris: MASSON, (1995).

Google Scholar

[18] W. Burger and M. Burge: Digital image processing: an algorithm introduction using java (Springer, New York, 2008).

Google Scholar

[19] M. I. Shamos and D. Hoey: Proc. of the 16th annual IEEE symposium on foundations of computer science (1975) p.151–162.

Google Scholar

[20] H. K. Sugihara, M. Iri, H. Inagaki and T. Imai: Comp. Electron. Agric. Vol. 52 (2006), pp.36-48.

Google Scholar