Jumping Locomotion and it's Application in Robots – A Review

Article Preview

Abstract:

This paper presents an overview of jumping robots and the methods used to stimulate them for their movements to prey something or escape themselves. The locomotion type is generally divided into two groups, i.e. directly actuated and indirectly actuated jumping robots. Three examples from the former and four of later class are analyzed in detail and their structures are presented with self-explained pictures. The advantages and disadvantages of each class are also discussed. On the basis of the analysis, it can be observed that directly actuated jumping robots are having more advantages comparatively and some future work is suggested to eliminate their flaws and make them more reliable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

471-476

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Li, W. Liu, X. Fu, G. Bonsignori, U. Scarfogliero, C. Stefanini, and P. Dario, Jumping like an insect: Design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration, Mechatronics, vol. 22, no. 2, p.167–176, Mar. (2012).

DOI: 10.1016/j.mechatronics.2012.01.001

Google Scholar

[2] E. S. Barnard, Frogs. Pleasantville, NY: Gareth Stevens Pub., (2009).

Google Scholar

[3] R. F. Chapman, S. J. Simpson, and A. E. Douglas, The insects: structure and function. (2013).

Google Scholar

[4] S. Hirose and H. Yamada, Snake-like robots [Tutorial], IEEE Robot. Autom. Mag., vol. 16, no. 1, p.88–98, (2009).

DOI: 10.1109/mra.2009.932130

Google Scholar

[5] C. C. Ward and K. Iagnemma, A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain, IEEE Trans. Robot., vol. 24, no. 4, p.821–831, (2008).

DOI: 10.1109/tro.2008.924945

Google Scholar

[6] M. C. Birch, R. D. Quinn, G. Hahm, S. M. Phillips, B. T. Drennan, A. J. Fife, R. D. Beer, X. Yu, S. L. Garverick, S. Laksanacharoen, A. J. Pollack, and R. E. Ritzmann, Cricket-based robots, IEEE Robot. Autom. Mag., vol. 9, no. 4, p.20–30, (2002).

DOI: 10.1109/mra.2002.1160068

Google Scholar

[7] G. M. N. Roger D. Quinn, Insect Designs for Improved Robot Mobility.

Google Scholar

[8] W. Zhang, S. Guo, and K. Asaka, Development of underwater microrobot with biomimetic locomotion, Appl. Bionics Biomech., vol. 3, no. 3, p.245–252, Jan. (2006).

DOI: 10.1533/abbi.2006.0033

Google Scholar

[9] S. Guo, L. Shi, and K. Asaka, IPMC actuator-sensor based a biomimetic underwater microrobot with 8 Legs, in IEEE International Conference on Automation and Logistics, 2008. ICAL 2008, 2008, p.2495–2500.

DOI: 10.1109/ical.2008.4636588

Google Scholar

[10] S. Guo, M. Li, L. Shi, and S. Mao, Development of a novel underwater biomimetic microrobot with two motion attitudes, in 2012 ICME International Conference on Complex Medical Engineering (CME), 2012, p.763–768.

DOI: 10.1109/iccme.2012.6275641

Google Scholar

[11] W. Zhang, S. Guo, and K. Asaka, Development and Analysis an Underwater Boomimetic Microrobot, in 2006 IEEE International Conference on Information Acquisition, 2006, p.212–217.

DOI: 10.1109/icia.2006.305997

Google Scholar

[12] L. Shi, S. Guo, K. Asaka, and S. Mao, Development and experiments of a novel multifunctional underwater microrobot, in 2010 IEEE 4th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), 2010, p.1–6.

DOI: 10.1109/nanomed.2010.5749794

Google Scholar

[13] S. Guo, L. Shi, and K. Asaka, IPMC actuator-based an underwater microrobot with 8 legs, in IEEE International Conference on Mechatronics and Automation, 2008. ICMA 2008, 2008, p.551–556.

DOI: 10.1109/icma.2008.4798816

Google Scholar

[14] O. Ozcan, H. Wang, J. D. Taylor, and M. Sitti, Surface tension driven water strider robot using circular footpads, in 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010, p.3799–3804.

DOI: 10.1109/robot.2010.5509843

Google Scholar

[15] Q. -V. Nguyen, Q. -T. Truong, H. C. Park, N. S. Goo, and D. Byun, A motor-driven flapping-wing system mimicking beetle flight, in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009, p.1087–1092.

DOI: 10.1109/robio.2009.5420860

Google Scholar

[16] R. J. Wood, The First Takeoff of a Biologically Inspired At-Scale Robotic Insect, IEEE Trans. Robot., vol. 24, no. 2, p.341–347, (2008).

DOI: 10.1109/tro.2008.916997

Google Scholar

[17] Q. V. Nguyen, H. C. Park, N. S. Goo, and D. Byun, Characteristics of a Beetle's Free Flight and a Flapping-Wing System that Mimics Beetle Flight, J. Bionic Eng., vol. 7, no. 1, p.77–86, Mar. (2010).

DOI: 10.1016/s1672-6529(09)60195-5

Google Scholar

[18] M. Kovac, M. Schlegel, J. -C. Zufferey, and D. Floreano, A miniature jumping robot with self-recovery capabilities, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, 2009, p.583–588.

DOI: 10.1109/iros.2009.5354005

Google Scholar

[19] J. Zhao, N. Xi, B. Gao, M. W. Mutka, and L. Xiao, Design and testing of a controllable miniature jumping robot, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, p.3346–3351.

DOI: 10.1109/iros.2010.5648982

Google Scholar

[20] J. Zhang, G. Song, Y. Li, G. Qiao, A. Song, and A. Wang, A bio-inspired jumping robot: Modeling, simulation, design, and experimental results, Mechatronics, vol. 23, no. 8, p.1123–1140, Dec. (2013).

DOI: 10.1016/j.mechatronics.2013.09.005

Google Scholar

[21] T. Oshima, N. Momose, K. Koyanagi, T. Matsuno, and T. Fujikawa, Jumping Mechanism Imitating Vertebrate by the Mechanical Function of Bi-articular Muscle, in International Conference on Mechatronics and Automation, 2007. ICMA 2007, 2007, p.1920–(1925).

DOI: 10.1109/icma.2007.4303844

Google Scholar

[22] M. Kovac, M. Fuchs, A. Guignard, J. -C. Zufferey, and D. Floreano, A miniature 7g jumping robot, in IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, 2008, p.373–378.

DOI: 10.1109/robot.2008.4543236

Google Scholar

[23] M. Noh, S. -W. Kim, S. An, J. -S. Koh, and K. -J. Cho, Flea-Inspired Catapult Mechanism for Miniature Jumping Robots, IEEE Trans. Robot., vol. 28, no. 5, p.1007–1018, (2012).

DOI: 10.1109/tro.2012.2198510

Google Scholar

[24] J. Zhao, R. Yang, N. Xi, B. Gao, X. Fan, M. W. Mutka, and L. Xiao, Development of a miniature self-stabilization jumping robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, 2009, p.2217–2222.

DOI: 10.1109/iros.2009.5353949

Google Scholar

[25] H. Tsukagoshi, M. Sasaki, A. Kitagawa, and T. Tanaka, Design of a Higher Jumping Rescue Robot with the Optimized Pneumatic Drive, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, 2005, p.1276.

DOI: 10.1109/robot.2005.1570291

Google Scholar

[26] H. Tsukagoshi, M. Sasaki, A. Kitagawa, and T. Tanaka, Numerical Analysis and Design for a Higher Jumping Rescue Robot Using a Pneumatic Cylinder, J. Mech. Des., vol. 127, no. 2, p.308–314, Mar. (2005).

DOI: 10.1115/1.1825440

Google Scholar

[27] W. Dunwen, G. Wenjie, and L. Yiyang, The concept of a jumping rescue robot with variable transmission mechanism, in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2011, p.99–104.

DOI: 10.1109/ssrr.2011.6106759

Google Scholar

[28] M. Mehrandezh, B. W. Surgenor, and S. R. H. Dean, Jumping height control of an electrically actuated, one-legged hopping robot: modelling and simulation, in , Proceedings of the 34th IEEE Conference on Decision and Control, 1995, 1995, vol. 2, p.1016.

DOI: 10.1109/cdc.1995.480223

Google Scholar

[29] K. Sayama, H. Masuta, and H. Lim, Development of one-legged jumping robot with artificial musculoskeletal system, in 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2012, p.608–613.

DOI: 10.1109/urai.2012.6463095

Google Scholar

[30] B. Ugurlu and A. Kawamura, Real-time jumping trajectory generation for a one legged jumping robot, in 34th Annual Conference of IEEE Industrial Electronics, 2008. IECON 2008, 2008, p.1668–1673.

DOI: 10.1109/iecon.2008.4758204

Google Scholar

[31] T. Geng, Y. Yang, and X. Xu, A novel one-legged robot: cyclic gait inspired by a jumping frog, in 2001 IEEE International Conference on Systems, Man, and Cybernetics, 2001, vol. 3, p.1412–1417 vol. 3.

DOI: 10.1109/icsmc.2001.973480

Google Scholar

[32] R. Tajima and K. Suga, Motion having a Flight Phase: Experiments Involving a One-legged Robot, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.1726–1731.

DOI: 10.1109/iros.2006.282132

Google Scholar

[33] T. Ho and S. Y. Lee, Design of a Piezoelectrically Actuated Jumping Robot, Adv. Mater. Res., vol. 311–313, p.2211–2214, Aug. (2011).

DOI: 10.4028/www.scientific.net/amr.311-313.2211

Google Scholar

[34] R. E. Snodgrass, Principles of insect morphology. McGraw-Hill Book Company, inc., (1935).

Google Scholar

[35] G. Zuo, R. Sun, G. Wang, and K. Wang, BJR: A bipedal jumping robot using double-acting pneumatic cylinders and torsion springs, in 2011 International Conference on Mechatronics and Automation (ICMA), 2011, p.1275–1279.

DOI: 10.1109/icma.2011.5985845

Google Scholar

[36] N. S. Reddy, R. Ray, and S. N. Shome, Modeling and simulation of a jumping frog robot, in 2011 International Conference on Mechatronics and Automation (ICMA), 2011, p.1264–1268.

DOI: 10.1109/icma.2011.5985843

Google Scholar

[37] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, Design of HyQ – a hydraulically and electrically actuated quadruped robot, Proc. Inst. Mech. Eng. Part J. Syst. Control Eng., p.0959651811402275, Aug. (2011).

DOI: 10.1177/0959651811402275

Google Scholar

[38] C. Bin, P. Zhongcai, T. Zhiyong, G. Xiaoqiang, and Z. Haixiao, Structure analysis of hydraulic jumping robot, in 2011 International Conference on Fluid Power and Mechatronics (FPM), 2011, p.769–774.

DOI: 10.1109/fpm.2011.6045864

Google Scholar

[39] J. Zhao, J. Xu, B. Gao, N. Xi, F. J. Cintron, M. W. Mutka, and L. Xiao, MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot, IEEE Trans. Robot., vol. 29, no. 3, p.602–614, (2013).

DOI: 10.1109/tro.2013.2249371

Google Scholar

[40] Y. H. Shin, K. Ryu, T. J. Kim, J. H. Lee, J. Y. Choi, C. -H. Yim, and D. H. Kim, Mechanism and control of a jumping robot, " in International Conference on Control, Automation and Systems, 2007. ICCAS , 07, 2007, p.2499–2502.

DOI: 10.1109/iccas.2007.4406784

Google Scholar

[41] D. H. Kim, D. -S. Kim, D. -S. Choi, B. -H. Lee, D. -H. Yoon, and C. H. Yim, Mechanism design and autonomous movement and jump control for a jumping robot, in 2010 International Conference on Control Automation and Systems (ICCAS), 2010, p.290.

DOI: 10.1109/iccas.2010.5670290

Google Scholar