Controllable Synthesis of ZnO Nanostructures via Template-Free Electrochemical Deposition at Low Temperature and their Optical Properties

Article Preview

Abstract:

We report template-free electrochemical deposition method for preparing ZnO nanostructures arrays on indium tin oxides (ITO) glass substrate. Multiform ZnO nanostructures, such as nanotubes, nanorods with tower-like tips, cone-like tips and groove-like tips, are controllably synthesized at 60 °C, which is lower compared with the prepared temperatures of reported works. The results of XRD indicate the wurtzite ZnO nanostructures are single-crystalline and grow along the c-axis perpendicularly on the substrate. These findings have potential for the growth of high-quality ZnO nanostructures arrays and device applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

540-544

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L Lin, Appl. Phys. Lett. 84 (2004) 3654-3656.

Google Scholar

[2] X. D. Bai, P. X. Gao, Z. L. Wang, E. G. Wang, Appl. Phys. Lett. 82 (2003) 4806-4808.

Google Scholar

[3] J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, L. C. Chen, Appl. Phys. Lett. 81 (2002) 1312-1314.

Google Scholar

[4] Z. L. Wang, J. H. Song, Science 312 (2006) 242-246.

Google Scholar

[5] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, S. J. Park, Appl. Phys. Lett. 86 (2005) 222101(3pp).

Google Scholar

[6] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4 (2005) 455-459.

Google Scholar

[7] C. Badre, T. Pauporté, M. Turmine, D. Lincot, Nanotechnology 18 (2007) 365705(4pp).

DOI: 10.1088/0957-4484/18/36/365705

Google Scholar

[8] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, Appl. Phys. Lett. 83 (2003) 2943-2945.

Google Scholar

[9] R. Perez-Casero, A. Gutierrez-Llorente, O. Pons-y-Moll, W. Seiler, R. M. Defourneau, D. Defourneau, E. Millon, J. Perriere, P. Goldner, B. Viana, J Appl. Phys. 97 (2005) 054905(7pp).

DOI: 10.1063/1.1858058

Google Scholar

[10] D. C. Oh, T. Suzuki, J. J. Kim, H. Makino, T. Hanada, M. W. Cho, T. Yao, Appl. Phys. Lett. 86 (2005) 032909(3pp).

Google Scholar

[11] X. Wang, C. J. Summers, Z. L. Wang, Nano Lett. 4 (2004) 423-426.

Google Scholar

[12] M. Haase, H. Weller, A. Henglein, J. Phys. Chem. 92 (1998) 482-487.

Google Scholar

[13] R. Tena-Zaera, J. Elias, G. Wang, C. Lévy-Clément, J. Phys. Chem. C 111 (2007) 16706-16711.

DOI: 10.1021/jp073985g

Google Scholar

[14] J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, L. Philippe, Adv. Mater. 22 (2010) 1-6.

DOI: 10.1002/adma.200903098

Google Scholar

[15] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett. 363 (2002) 123-128.

Google Scholar

[16] B. Illy, B. A. Shollock, J. L. MacManus-Driscoll, M. P. Ryan, Nanotechnology 16 (2005) 320-3324.

DOI: 10.1088/0957-4484/16/2/025

Google Scholar

[17] B. Q. Cao, W. P. Cai, G. T. Duan, Y. Li, Q. Zhao, D. P. Yu, Nanotechnology 16 (2005) 2567-2574.

Google Scholar

[18] D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, J. Phys. Chem. C 116 (2012) 150-156.

Google Scholar