A Taguchi-SQP Approach for Minimizing Energy per Unit Diesel Production at Crude Distillation Unit

Article Preview

Abstract:

Crude distillation unit (CDU) is one of the largest energy consumer units in a refinery. It consumes around 35-40% of the total process energy in refinery. This paper presents a systematic approach for selecting optimization variables using Taguchi method. These variables are subsequently employed in minimizing energy consumption per unit diesel production at CDU. A steady state model of the CDU was developed under the HYSYS 7.2 environment and utilized to demonstrate the efficacy of this method. Optimum energy consumption per unit diesel production obtained from Taguchi were validated by comparing the results with those obtained from HYSYS built-in SQP solver. The results reveal that the combination of Taguchi and SQP solver can reduce CPU time for optimization purposes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-231

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, Process Dynamics and Control, Wiley, (2004).

Google Scholar

[2] M.A. Fahim, T.A. Al-Sahhaf, A. Elkilani, Fundamentals of Petroleum Refining, Elsevier, (2010).

Google Scholar

[3] R.E. Young, Petroleum refining process control and real-time optimization, Control Systems, IEEE. 26(6) (2006) 73-83.

DOI: 10.1109/mcs.2006.252833

Google Scholar

[4] K. Basak, K.S. Abhilash, S. Ganguly, D.N. Saraf, On-line optimization of a crude distillation unit with constraints on product properties, Industrial & Engineering Chemistry Research. 41(6) (2002) 1557-1568.

DOI: 10.1021/ie010059u

Google Scholar

[5] D.J. Dave, M.Z. Dabhiya, S.V.K. Satyadev, S. Ganguly, D.N. Saraf, Online tuning of a steady state crude distillation unit model for real time applications, Journal of Process Control. 13(3) (2003) 267-282.

DOI: 10.1016/s0959-1524(02)00026-4

Google Scholar

[6] S.V. Inamdar, S.K. Gupta, D.N. Saraf, Multi-objective optimization of an industrial crude distillation unit using the elitist non-dominated sorting genetic algorithm, Chemical Engineering Research and Design. 82(5) (2004) 611-623.

DOI: 10.1205/026387604323142667

Google Scholar

[7] L.C. Liau, T.C. Yang, M. Tsai, Expert system of a crude oil distillation unit for process optimization using neural networks, Expert Systems with Applications. 26(2) (2004) 247-255.

DOI: 10.1016/s0957-4174(03)00139-8

Google Scholar

[8] S. Motlaghi, F. Jalali, M.N. Ahmadabadi, An expert system design for a crude oil distillation column with the neural networks model and the process optimization using genetic algorithm framework, Expert Systems with Applications. 35(4) (2008).

DOI: 10.1016/j.eswa.2007.08.105

Google Scholar

[9] N. Saghatoleslami, F. Shikholeslami, F. Shahraki, Y. Dadmohamadi, Cost estimation and optimization of the topping unit products at the steady state condition, Proceedings of the 1st Annual Gas Processing Symposium. (2009) 1-9.

DOI: 10.1016/b978-0-444-53292-3.50011-0

Google Scholar

[10] A. Fazlali, S. Hosseini, B. Yasini, A. Moghadassi, Optimization of operating conditions of distillation columns: an energy saving option in refinery industry, Songklanakarin Journal of Science and Technology. 31(6) (2009) 661-664.

Google Scholar

[11] D. Lopez, C. Mahecha, L. Hoyos, L. Acevedo, J. Villamizar, Optimization model of a system of crude oil distillation units with heat integration and metamodeling, CT&F Ciencia, Tecnología y Futuro. 3(5) (2009) 159-174.

DOI: 10.29047/01225383.455

Google Scholar

[12] P. García-Herreros, J.M. Gómez, Modeling and optimization of a crude distillation unit: a case study for undergraduate students, Computer Applications in Engineering Education. n/a (2010) n/a.

DOI: 10.1002/cae.20469

Google Scholar

[13] R.K. More, V.K. Bulasara, R. Uppaluri, V.R. Banjara, Optimization of crude distillation system using aspen plus: Effect of binary feed selection on grass-root design, Chemical Engineering Research and Design. 88(2) (2010) 121-134.

DOI: 10.1016/j.cherd.2009.08.004

Google Scholar

[14] S. Kemaloğlu, E.Ö. Kuzu, D. Gökçe, Ö. Çetin, Model predictive control of a crude distillation unit an industrial application, International Symposium on Advanced Control of Chemical Process (ADCHEM 2009). (2009).

DOI: 10.3182/20090712-4-tr-2008.00144

Google Scholar

[15] M. Tran, D.K. Varvarezos, M. Nasir, M. The importance of first-principles, model-based steady-state gain calculations in model predictive control—a refinery case study, Control Engineering Practice. 13(11) (2005) 1369-1382.

DOI: 10.1016/j.conengprac.2004.11.015

Google Scholar

[16] N. Yusoff, M. Ramasamy, S. Yusup, Profit optimization of a refrigerated gas plant, Proceedings of EnCon2007 1st Engineering Conference on Energy & Environment. (2007) 227-232.

Google Scholar

[17] N. Yusoff, M. Ramasamy, M. Profit Optimization, VDM Verlag, (2010).

Google Scholar

[18] G. Taguchi, R. Jugulim, The Mahalanobis-Taguchi Strategy : A Pattern Technology System, J. Wiley, New York, (2002).

Google Scholar

[19] G. Taguchi, S. Chowdhury, S. Taguchi, Robust Engineering: Learn How to Boost Quality While Reducing Costs & Time to Market, McGraw-Hill, New York, (2000).

Google Scholar

[20] N. Yusoff, M. Ramasamy, S. Yusup, Taguchi's parametric design approach for the selection of optimization variables in a refrigerated gas plant. Chemical Engineering Research and Design. 89(6) (2011) 665-675.

DOI: 10.1016/j.cherd.2010.09.021

Google Scholar

[21] K.R. Jamaludin, N. Muhamad, M.N.A. Rahman, S. Ahmad, M.H.I. Ibrahim, N.H.M. Nor, Optimizing the injection parameter of water atomised SS316L powder with design of experiment method for best sintered density, Chiang Mai Journal of Science. 36(3) (2009).

Google Scholar

[22] K. Yang, E. Teo, F.K. Fuss, Application of taguchi method in optimization of cervical ring cage, Journal of Biomechanics. 40(14) (2007) 3251-3256.

DOI: 10.1016/j.jbiomech.2006.12.016

Google Scholar

[23] R.K. Roy, A Primer on the Taguchi Method, Dearborn, Mich: Society of Manufacturing Engineers, (1990).

Google Scholar

[24] O.J. Guerra, G.A.C.L. Roux, Improvements in petroleum refinery planning: 1. formulation of process models, Industrial & Engineering Chemistry Research. 50(23) (2011) 13403-13418.

DOI: 10.1021/ie200303m

Google Scholar