[1]
J. Li, Y. Yin, X. Zhang, J. Liu, R. Yan, Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst, Int. J. Hydrogen Energy. 34 (2009) 9108-9115.
DOI: 10.1016/j.ijhydene.2009.09.030
Google Scholar
[2]
Z. Khan, S. Yusup, M.M. Ahmad, A. Ramli, M.T. Arpin, S.S. Abdullah, M.F. Mohamad, S.E.E. Misi, A. Inayat, Effect of steam and catalyst on palm oil wastes thermal decomposition for hydrogen production, Res. J. Chem. Env. 15 (2011) 466-472.
Google Scholar
[3]
L. Wei, S. Xu, L. Zhang, C. Liu, H. Zhu, S. Liu, Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor, Int. J. Hydrogen Energy. 32 (2007) 24-31.
DOI: 10.1016/j.ijhydene.2006.06.002
Google Scholar
[4]
C. Pfeifer, H. Hofbauer, Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier, Powder Technol. 180 (2008) 9-16.
DOI: 10.1016/j.powtec.2007.03.008
Google Scholar
[5]
M.R. Mahishi, M.S. Sadrameli, S. Vijayaraghavan, D.Y. Goswami, A novel approach to enhance the hydrogen yield of biomass gasification using CO2 sorbent, J. Eng. Gas Turbines Power. 130 (2008) 1-8.
DOI: 10.1115/1.2747252
Google Scholar
[6]
T. Marquard-Moellenstedt, Sichler, P., Specht, M., Michel, M., Berger, R., Hein, K., Höftberger, E., Rauch, R., Hofbauer, H., New approach for biomass gasification to hydrogen, 2nd World Biomass Conference for Energy, Industry and Climate Protection Rome, Italy, (2004).
Google Scholar
[7]
P. Weerachanchai, M. Horio, C. Tangsathitkulchai, Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass, Bioresour. Technol. 100 (2009) 1419-1427.
DOI: 10.1016/j.biortech.2008.08.002
Google Scholar
[8]
G. Hu, S. Xu, S. Li, C. Xiao, S. Liu, Steam gasification of apricot stones with olivine and dolomite as downstream catalysts, Fuel Process. Technol. 87 (2006) 375-382.
DOI: 10.1016/j.fuproc.2005.07.008
Google Scholar
[9]
E. Gusta, A.K. Dalai, M.A. Uddin, E. Sasaoka, Catalytic decomposition of biomass tars with dolomites, Energ Fuel. 23 (2009) 2264-2272.
DOI: 10.1021/ef8009958
Google Scholar
[10]
S. Rapagnà, N. Jand, P.U. Foscolo, Catalytic gasification of biomass to produce hydrogen rich gas, Int. J. Hydrogen Energy. 23 (1998) 551-557.
DOI: 10.1016/s0360-3199(97)00108-0
Google Scholar
[11]
D. Sutton, B. Kelleher, J.R.H. Ross, Review of literature on catalysts for biomass gasification, Fuel Process. Technol. 73 (2001) 155-173.
DOI: 10.1016/s0378-3820(01)00208-9
Google Scholar
[12]
S. Rakass, H. Oudghiri-Hassani, P. Rowntree, N. Abatzoglou, Steam reforming of methane over unsupported nickel catalysts, J. Power Sources. 158 (2006) 485-496.
DOI: 10.1016/j.jpowsour.2005.09.019
Google Scholar
[13]
A.A. Peterson, F. Vogel, R.P. Lachance, M. Froling, J.M.J. Antal, J.W. Tester, Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy Enviorn. Sci. 1 (2008) 32-65.
DOI: 10.1039/b810100k
Google Scholar
[14]
O. Carmody, R. Frost, Y. Xi, S. Kokot, Surface characterisation of selected sorbent materials for common hydrocarbon fuels, Surf. Sci. 601 (2007) 2066-(2076).
DOI: 10.1016/j.susc.2007.03.004
Google Scholar
[15]
H. Guoxin, H. Hao, Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent, Biomass Bioenergy. 33 (2009) 899-906.
DOI: 10.1016/j.biombioe.2009.02.006
Google Scholar
[16]
M. He, B. Xiao, S. Liu, X. Guo, S. Luo, Z. Xu, Y. Feng, Z. Hu, Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition, Int. J. Hydrogen Energy. 34 (2009).
DOI: 10.1016/j.ijhydene.2008.11.115
Google Scholar
[17]
J. Li, J. Liu, S. Liao, R. Yan, Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/[gamma]-Al2O3 catalyst, Int. J. Hydrogen Energy. 35 (2010) 7399-7404.
DOI: 10.1016/j.ijhydene.2010.04.108
Google Scholar
[18]
R.W. Hughes, D. Lu, E.J. Anthony, Y. Wu, Improved long-term conversion of limestone-Derived sorbents for in situ capture of CO2 in a fluidized bed combustor, Ind. Eng. Chem. Res. 43 (2004) 5529-5539.
DOI: 10.1021/ie034260b
Google Scholar
[19]
N.H. Florin, A.T. Harris, Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents, Chem. Eng. Sci. 63 (2008) 287-316.
DOI: 10.1016/j.ces.2007.09.011
Google Scholar
[20]
W. -T. Tsai, K. -J. Hsien, H. -C. Hsu, C. -M. Lin, K. -Y. Lin, C. -H. Chiu, Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution, Bioresour. Technol. 99 (2008) 1623-1629.
DOI: 10.1016/j.biortech.2007.04.010
Google Scholar
[21]
M. Muhamed, Synthesis of calcium oxide from waste cockle shell for CO2 adsorption, Department of Chemical Engineering Universiti Teknology PETRONAS, Bandar Seri Iskandar, Malaysia (2011).
DOI: 10.35940/ijeat.b4940.129219
Google Scholar
[22]
L. Wei, S. Xu, J. Liu, C. Liu, S. Liu, Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent, Energy Fuels. 22 (2008) 1997-(2004).
DOI: 10.1021/ef700744a
Google Scholar
[23]
S. Nasrazadani, E. Eureste, Application of FTIR for quantitative lime analysis University of North Texas, (2008).
Google Scholar
[24]
S. Inc, Basics of X-ray diffraction manual, Scintag Inc Curptino, USA, (1999).
Google Scholar
[25]
S. Therdthianwong, C. Siangchin, A. Therdthianwong, Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition, Fuel Process. Technol. 89 (2008) 160-168.
DOI: 10.1016/j.fuproc.2007.09.003
Google Scholar
[26]
S. Brunauer, The adsoprtion of gasses and vapors, Princeton university press, Princeton, N.J., (1943).
Google Scholar
[27]
P.A. Webb, C. Orr, Analytical methods in fine particle technology, Micromeritics Instrument corporation, USA, (1997).
Google Scholar
[28]
K. Katsumi, Determination of pore size and pore size distribution: 1. Adsorbents and catalysts, J. Membr. Sci. 96 (1994) 59-89.
Google Scholar
[29]
B.R. Stanmore, P. Gilot, Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration, Fuel Process. Technol. 86 (2005) 1707-1743.
DOI: 10.1016/j.fuproc.2005.01.023
Google Scholar
[30]
S. Ramkumar, M. Iyer, D. Wong, H. Gupta, B. Sakadjian, L. -S. Fan, Enhanced hydrogen production integrated with CO2 separation in a single-stage reactor, Department of Chemical and Biomolecular Engineering, The Ohio State University, (2008).
DOI: 10.2172/982244
Google Scholar
[31]
G. Xu, T. Murakami, T. Suda, S. Kusama, T. Fujimori, Distinctive effects of CaO additive on atmospheric gasification of biomass at different temperatures, Ind. Eng. Chem. Res. 44 (2005) 5864-5868.
DOI: 10.1021/ie050432o
Google Scholar
[32]
J. Corella, A. Orío, P. Aznar, Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts, Ind. Eng. Chem. Res. 37 (1998) 4617-4624.
DOI: 10.1021/ie980254h
Google Scholar
[33]
S. Rapagná, H. Provendier, C. Petit, A. Kiennemann, P.U. Foscolo, Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification, Biomass Bioenergy. 22 (2002) 377-388.
DOI: 10.1016/s0961-9534(02)00011-9
Google Scholar
[34]
L. Han, Q. Wang, Y. Yang, C. Yu, M. Fang, Z. Luo, Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed, Int. J. Hydrogen Energy. 36 (2011) 4820-4829.
DOI: 10.1016/j.ijhydene.2010.12.086
Google Scholar
[35]
B. Acharya, A. Dutta, P. Basu, An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO, Int. J. Hydrogen Energy. 35 (2010) 1582-1589.
DOI: 10.1016/j.ijhydene.2009.11.109
Google Scholar
[36]
C. Pfeifer, B. Puchner, H. Hofbauer, Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2, Chem. Eng. Sci. 64 (2009) 5073-5083.
DOI: 10.1016/j.ces.2009.08.014
Google Scholar