Preparation and Characterization of Polysulfone Membrane for Gas Separation

Article Preview

Abstract:

Symmetric and asymmetric polysulfone membranes were fabricated using different of solvents; N-methyl-pyrrolidone (NMP), Tetrahydrofuran (THF) and Dimethylacetamide (DMAC) at different polymer concentration (15 and 20%) to study the influence of varying type of solvents and polymer concentration in membrane fabrication. The membranes were characterized using Field Emission Scanning Electron Microscopy (FESEM), Thermogravimetric Analyzer (TGA), Universal Testing Machine (UTM) and Fourier Transform Infra-Red (FTIR).The results disclosed that the symmetric, higher polymer concentration membrane contributed to better thermal and mechanical stabilities. PSF/THF membrane showed good mechanical strength while PSF/DMAC membrane illustrated great thermal stability. 20% of polymer concentration and PSF/THF membrane led to the thicker skin layer and dense structure formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-316

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.I.F. Ferreira, CO2/CH4 Separation with ionic liquids, in: Dept. Chem., Univ Aveiro, Aveiro, Portugal, (2010).

Google Scholar

[2] W.J. Schell, C.D. Houston, In Membrane Gas Separations for Chemical Process and Energy Application, in: Indusrial Gas Separation, 1983, pp.125-143.

Google Scholar

[3] I. Cabasso, K.A. Lundy, method of making membranes for gas separation and the composite membranes, in, United States, (1986).

Google Scholar

[4] M. Mulder, Basic Principles of Membrane Technology Second Edition, 2 ed., Kluwer Academic Publishers, Netherlands, (1996).

Google Scholar

[5] B.C. Ng, H. Hasbullah, A.F. Ismail, W.A.W. Abdul Rahman, Formation of asymmetric polysulfone flat sheet membrane for gas separation: rheological assessment, in: Regional Symp on Membrane Sci and Technology Johor, Malaysia, (2004).

DOI: 10.11113/jt.v41.720

Google Scholar

[6] W. -J. Lee, D. -S. Kim, J. -H. Kim, Preparation and gas separation properties of asymmetric polysulfone membranes by a dual bath method, korean journal of chemical engineering, 17 (2000) 143-148.

DOI: 10.1007/bf02707135

Google Scholar

[7] P. Hacarlioglu, L. Toppare, L. Yilmaz, Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes, Journal of Applied Polymer Science, 90 (2003) 776-785.

DOI: 10.1002/app.12505

Google Scholar

[8] G.C. Kapantaidakis, S.P. Kaldis, G.P. Sakellaropoulos, E. Chira, B. Loppinet, G. Floudas, Interrelation between phase state and gas permeation in polysulfone/polyimide blend membranes, J Polym Sci Pol Phys, 37 (1999) 2788-2798.

DOI: 10.1002/(sici)1099-0488(19991001)37:<2788::aid-polb8>3.0.co;2-l

Google Scholar

[9] a. tabe-mohammadi, j. p. g. villaluenga, h. j. kim, t. chan, v. rauw, effects of polymer solvents on the performance of cellulose acetate membrane in methanol-methyl tertiary buthyl ether separation, (2001).

DOI: 10.1002/app.2144

Google Scholar

[10] A.F. Ismail, P.Y. Lai, Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology, Separation and Purification Technology, 40 (2004) 191-207.

DOI: 10.1016/j.seppur.2004.02.011

Google Scholar

[11] H.J. Kim, R.K. Tyagi, A.E. Fouda, K. Ionasson, The kinetic study for asymmetric membrane formation via phase-inversion process, Journal of Applied Polymer Science, 62 (1996) 621-629.

DOI: 10.1002/(sici)1097-4628(19961024)62:4<621::aid-app5>3.0.co;2-v

Google Scholar

[12] A.F.I. M.A. Aroon, M.M. Montazer-Rahmati, T. Matsuura, Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent, Separation and Purification Technology, 72 (2010) 194-202.

DOI: 10.1016/j.seppur.2010.02.009

Google Scholar

[13] H.J. Kim, S.I. Hong, The transport properties of CO2 and CH4 for chemically modified polysulfones, J Appl Polym Sci, 76 (1999) 391-400.

DOI: 10.1002/(sici)1097-4628(20000418)76:3<391::aid-app14>3.0.co;2-5

Google Scholar

[14] J.A. Hof van 't, A.J. Reuvers, R.M. Boom, H.H.M. Rolevink, C.A. Smolders, Preparation of asymmetric gas separation membranes with high selectivity by a dual bath coagulation method, Journal membrane science, 70 (1992) 17-30.

DOI: 10.1016/0376-7388(92)80076-v

Google Scholar

[15] A.F. Ismail, P.Y. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Separation and Purification Technology, 33 (2003) 127-143.

DOI: 10.1016/s1383-5866(02)00201-0

Google Scholar

[16] S.S. Madaeni, P. Moradi, Preparation and characterization of asymmetric polysulfone membrane for separation of oxygen and nitrogen gases, Journal of Applied Polymer Science, 121 (2011) 2157-2167.

DOI: 10.1002/app.33804

Google Scholar

[17] S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Effect of varying solvents compositions on morphology and gas permeation properties on membranes blends for CO2 separation from natural gas, J Membrane Sci, 378 (2011) 444-452.

DOI: 10.1016/j.memsci.2011.05.025

Google Scholar

[18] W.A.W.A. Rahman, Formation and characterization of mixed matrix composite materials for efficient energy gas separation, in: U.T. Malaysia (Ed. ), Universiti Teknologi Malaysia, Malaysia, (2005).

Google Scholar

[19] A.S. Wiryotmojo, H. Mukhtar, Z. Man, Development of polysulfone carbon molecular sieves mixed matrix membranes for CO2 removal from natural gas, in: International Conference on Chemical, Biological and Environemntal Engineering, Singapore, (2009).

DOI: 10.1142/9789814295048_0052

Google Scholar