[1]
R.О. Kaibyshev, V.N. Skorobogatykh, I.A. Shenkova, New martensitic steels for fossil power plant: Creer resistance, FMM (2009) 200-215.
Google Scholar
[2]
I. Fedorova, Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Microstructure and Deformation Behavior of a Hot Forged 9% Cr Creep Resistant Steels, Adv. Mater. Res. 409 (2012) 672–677.
DOI: 10.4028/www.scientific.net/amr.409.672
Google Scholar
[3]
J. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience, Int. J. Pres. Vessel &. Piping. 85 (2008) 38–46.
DOI: 10.1016/j.ijpvp.2007.06.011
Google Scholar
[4]
P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep-resistant steels for power plant applications, Sadhana. 28 (2003) 709-730.
DOI: 10.1007/bf02706455
Google Scholar
[5]
F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int. 41 (2001) 612-625.
DOI: 10.2355/isijinternational.41.612
Google Scholar
[6]
I. Fedorova, A. Kipelova, A. Belyakov, R. Kaibyshev, Microstructure Evolution in an Advanced 9pct Cr Martensitic Steel during Creep at 923K, Metall. Mater. Trans. A. 44 (2012) 128-135.
DOI: 10.1007/s11661-012-1182-9
Google Scholar
[7]
M. Taneike, F. Abe, K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions, Nature. 424 (2003) 294-6.
DOI: 10.1038/nature01740
Google Scholar
[8]
F. Abe, Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr–W steels, Mater. Sci. Eng. A (2004) 565-569.
DOI: 10.1016/j.msea.2004.01.057
Google Scholar
[9]
J. Hald Microstructure and long-term creep properties of 9–12% Cr steels, Int. J. Pres. Vessel &. Piping. 85 (2008) 30-37.
DOI: 10.1016/j.ijpvp.2007.06.010
Google Scholar
[10]
M. Taneike, K. Sawada, F. Abe, Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment, Metall. Mater. Trans. 35 (2004) 1255-1262.
DOI: 10.1007/s11661-004-0299-x
Google Scholar
[11]
V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep, Metall. Mater. Trans. A. 44A (2013) 162-172.
DOI: 10.1007/s11661-011-0899-1
Google Scholar
[12]
A. Kipelova, R. Kaibyshev, A. Belyakov, D. Molodov, Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions, Mater. Sci. Eng., A. 528 (2011) 1280–1286.
DOI: 10.1016/j.msea.2010.10.006
Google Scholar
[13]
N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov, R. Kaibyshev, Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650◦C, Mater. Sci. Eng., A. 534 (2012) 632–639.
DOI: 10.1016/j.msea.2011.12.020
Google Scholar
[14]
A. Aghajani, Ch. Somsen, G. Eggeler, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel, Acta Metall. Mater. 57 (2009) 5093–5106.
DOI: 10.1016/j.actamat.2009.07.010
Google Scholar
[15]
R. Agamennone, W. Blum, C. Gupta, J.K. Chakravartty, Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels, Acta Metall. Mater. 54 (2006) 3003–3014.
DOI: 10.1016/j.actamat.2006.02.038
Google Scholar
[16]
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Metall. Mater. 54 (2006) 1279–1288.
DOI: 10.1016/j.actamat.2005.11.001
Google Scholar
[17]
H. K. D. H. Bhadeshia, R. Honeycombe, Steels. Microstructure and Properties, (2006) 344.
Google Scholar
[18]
A. Kipelova, A. Belyakov, R. Kaibyshev, Laves phase evolution in a modified P911 heart resistant steel during creep at 923 K, Mater. Sci. Eng., 532 (2012) 72-76.
DOI: 10.1016/j.msea.2011.10.064
Google Scholar
[19]
F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Second Edition, Elsevier, Boston, (2004).
DOI: 10.1016/b978-008044164-1/50003-7
Google Scholar
[20]
A.J. Ardell, On the Coarsening of Grain Boundary Precipitates, Acta Metall. 20 (1972) 601-609.
DOI: 10.1016/0001-6160(72)90015-6
Google Scholar
[21]
F. Abe, Coarsening Behavior of Lath and Its Effect on Creep Rates in Tempered Martensitic 9Cr-W Steels, Mater. Sci. Eng. A (2004) 565-569.
DOI: 10.1016/j.msea.2004.01.057
Google Scholar
[22]
J. Cermak, J. Ruzickova, A. Pokorna, Grain Boundary Diffusion of W in Fe-Cr Ferritic Alloys, Scripta Mater. (1995) 289-294.
Google Scholar
[23]
C. Zener, Theory of Spherical precipitates from solid solution, J. Appl. Phys. (1949) 950-953.
Google Scholar
[24]
A. Kipelova, M. Odnobokova, A. Belyakov, R. Kaibyshev, Effect of Co on Creep Behavior of a P911 Steel, Metall. Mater. Trans. A. 44A (2013) 577-583.
DOI: 10.1007/s11661-012-1390-3
Google Scholar