Evolution of Laves-Phase Particles in a Low Carbon 9%Cr Martensitic Steel during Creep at 650°C

Article Preview

Abstract:

The evolution of microstructure in low carbon heat resistant steel of P92-type modified with 3%Co was examined during creep tests at 923K for 500, 1500, 6000 and 16000 hours. After tempering at 1023K (750°C), the steel was composed of martensite lath structure with numerous precipitates of MX-type carbonitrides and rare M23C6-type carbides. The structural changes during creep tests are characterized by an increase in the sizes of laths and second phase particles. Moreover, the Fe2W Laves-phase precipitates during long-term creep. The Laves-phase particles grow accordingly to power-law relationship of creep time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-160

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.О. Kaibyshev, V.N. Skorobogatykh, I.A. Shenkova, New martensitic steels for fossil power plant: Creer resistance, FMM (2009) 200-215.

Google Scholar

[2] I. Fedorova, Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Microstructure and Deformation Behavior of a Hot Forged 9% Cr Creep Resistant Steels, Adv. Mater. Res. 409 (2012) 672–677.

DOI: 10.4028/www.scientific.net/amr.409.672

Google Scholar

[3] J. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience, Int. J. Pres. Vessel &. Piping. 85 (2008) 38–46.

DOI: 10.1016/j.ijpvp.2007.06.011

Google Scholar

[4] P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep-resistant steels for power plant applications, Sadhana. 28 (2003) 709-730.

DOI: 10.1007/bf02706455

Google Scholar

[5] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int. 41 (2001) 612-625.

DOI: 10.2355/isijinternational.41.612

Google Scholar

[6] I. Fedorova, A. Kipelova, A. Belyakov, R. Kaibyshev, Microstructure Evolution in an Advanced 9pct Cr Martensitic Steel during Creep at 923K, Metall. Mater. Trans. A. 44 (2012) 128-135.

DOI: 10.1007/s11661-012-1182-9

Google Scholar

[7] M. Taneike, F. Abe, K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions, Nature. 424 (2003) 294-6.

DOI: 10.1038/nature01740

Google Scholar

[8] F. Abe, Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr–W steels, Mater. Sci. Eng. A (2004) 565-569.

DOI: 10.1016/j.msea.2004.01.057

Google Scholar

[9] J. Hald Microstructure and long-term creep properties of 9–12% Cr steels, Int. J. Pres. Vessel &. Piping. 85 (2008) 30-37.

DOI: 10.1016/j.ijpvp.2007.06.010

Google Scholar

[10] M. Taneike, K. Sawada, F. Abe, Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment, Metall. Mater. Trans. 35 (2004) 1255-1262.

DOI: 10.1007/s11661-004-0299-x

Google Scholar

[11] V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep, Metall. Mater. Trans. A. 44A (2013) 162-172.

DOI: 10.1007/s11661-011-0899-1

Google Scholar

[12] A. Kipelova, R. Kaibyshev, A. Belyakov, D. Molodov, Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions, Mater. Sci. Eng., A. 528 (2011) 1280–1286.

DOI: 10.1016/j.msea.2010.10.006

Google Scholar

[13] N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov, R. Kaibyshev, Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650◦C, Mater. Sci. Eng., A. 534 (2012) 632–639.

DOI: 10.1016/j.msea.2011.12.020

Google Scholar

[14] A. Aghajani, Ch. Somsen, G. Eggeler, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel, Acta Metall. Mater. 57 (2009) 5093–5106.

DOI: 10.1016/j.actamat.2009.07.010

Google Scholar

[15] R. Agamennone, W. Blum, C. Gupta, J.K. Chakravartty, Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels, Acta Metall. Mater. 54 (2006) 3003–3014.

DOI: 10.1016/j.actamat.2006.02.038

Google Scholar

[16] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Metall. Mater. 54 (2006) 1279–1288.

DOI: 10.1016/j.actamat.2005.11.001

Google Scholar

[17] H. K. D. H. Bhadeshia, R. Honeycombe, Steels. Microstructure and Properties, (2006) 344.

Google Scholar

[18] A. Kipelova, A. Belyakov, R. Kaibyshev, Laves phase evolution in a modified P911 heart resistant steel during creep at 923 K, Mater. Sci. Eng., 532 (2012) 72-76.

DOI: 10.1016/j.msea.2011.10.064

Google Scholar

[19] F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Second Edition, Elsevier, Boston, (2004).

DOI: 10.1016/b978-008044164-1/50003-7

Google Scholar

[20] A.J. Ardell, On the Coarsening of Grain Boundary Precipitates, Acta Metall. 20 (1972) 601-609.

DOI: 10.1016/0001-6160(72)90015-6

Google Scholar

[21] F. Abe, Coarsening Behavior of Lath and Its Effect on Creep Rates in Tempered Martensitic 9Cr-W Steels, Mater. Sci. Eng. A (2004) 565-569.

DOI: 10.1016/j.msea.2004.01.057

Google Scholar

[22] J. Cermak, J. Ruzickova, A. Pokorna, Grain Boundary Diffusion of W in Fe-Cr Ferritic Alloys, Scripta Mater. (1995) 289-294.

Google Scholar

[23] C. Zener, Theory of Spherical precipitates from solid solution, J. Appl. Phys. (1949) 950-953.

Google Scholar

[24] A. Kipelova, M. Odnobokova, A. Belyakov, R. Kaibyshev, Effect of Co on Creep Behavior of a P911 Steel, Metall. Mater. Trans. A. 44A (2013) 577-583.

DOI: 10.1007/s11661-012-1390-3

Google Scholar