Design and Fabrication of New Ti-Based Ternary Metallic Glasses Based on Effective Atomic Radius in the Ti Solid Solution Calculated by Ab Initio Calculation

Article Preview

Abstract:

New Ti-based ternary metallic glasses were designed and fabricated. A new parameter called effective atomic radius in the Ti solid solution from ab-initio calculation was used to design of the Ti-based metallic glasses. From the effective atomic radius, Ti-Zr-Mn, Ti-Zr-Fe and Ti-Zr-Co systems can be considered as a new Ti-based ternary metallic glass. And the reported scheme based on the concept of binary eutectic clusters is applied to predict alloy composition which shows glass transition.We prepared the Ti42Zr22Mn36, Ti43Zr29Fe28 and Ti44Zr30Co26 alloy sheets by a single-roller method. It showed that sharp diffraction peak corresponding to crystalline phases could be observed in the XRD spectra of Ti42Zr22Mn36 and Ti43Zr29Fe28. While for alloy with Ti44Zr30Co26 no sharp diffraction peak could be found except broad diffraction halos. This result suggests that a critical eutectic temperature in the phase equilibrium for forming glass phase is around 1000°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

671-675

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. L. Zhu, X. M. Wang, A. Inoue, Intermetallics. 16 (2008) 1031-1035.

Google Scholar

[2] Y. C. Kim, W. T. Kim, D. H. Kim, Mater. Sci. Eng. A,375 (2004) 127-135.

Google Scholar

[3] A. Inoue, T. Zhang, T. Masumoto, J. Non-cryst. Solids. 156 (1993) 473-480.

Google Scholar

[4] G. J. Hao, J. P. Lin, Y. Zhang, G. L. Chen, Z. P. Lu, Mater. Sci. Eng. A,527 (2010) 6248.

Google Scholar

[5] A.Inoue, Mater. Trans. JIM. 36 (1995) 866.

Google Scholar

[6] M. H. Cohen, D. Turnbull, Nature. 187 (1961) 131.

Google Scholar

[7] O. N. Senkov, D. B. Miracle, Mater. Res. Bull. 36 (2001) 2183.

Google Scholar

[8] L. Pauling, J. Am. Chem. Soc. 69 (1947) 542-553.

Google Scholar

[9] International Tables for X-Ray Crystallography, BirMingham, England, 1968.

Google Scholar

[10] F. R. De Boer et al., Cohesion and structure, 1 North-Holland (1988) 276.

Google Scholar

[11] B. Predel: Equilibria of Binary Alloys, (Springer, Berlin, 2003) CD-ROM.

Google Scholar

[12] T. Uesugi, S. Miyamae, K. Higashi, Mater. Trans. 54 (2013) 484-492.

Google Scholar

[13] T. Uesugi, K. Higashi, Comput. Mater. Sci. 67 (2013) 1-10.

Google Scholar

[14] Z. P. Lu , J. Shen, D. W. Xing, J. F. Sun, C. T. Liu, Appl. Phys. Lett. 89 (2006) 07 19 10.

Google Scholar

[15] N. Nishiyama, A. Inoue, Appl. Phys. Lett. 80 (2002) 568.

Google Scholar

[16] H. W. Kui, A. L. Greer, W. L. Johnson, Appl. Phys. Lett. 45 (1984) 615.

Google Scholar

[17] D. Ma, H. Tan, D. Wang, Y. Li, E. Ma, Appl. Phys. Lett. 86 (2005) 191906.

Google Scholar