Corrosion Behavior of Engineering Materials in Flow Field

Article Preview

Abstract:

In this study, the effect of fluid flow rate, surface roughness and strain level on the corrosion behavior of magnesium alloy AZ31 was characterized in a custom test bench. Specimens were prepared by mechanical polishing and subject to flow in a simulated body fluid at 37°C for 24 hrs. Compared to a specimen pre-strain of 0%, mass loss was shown to increase by approximately 6% with a specimen pre-strain of 10%. Similarly, mass loss increased by approximately 13% when the fluid flow rate was increased from 250ml/min to 500ml/min. Surface roughness had a significant influence on corrosion behavior. Compared to a specimen polished with a 1 µm diamond paste, the mass loss for a specimen polished with #600 sandpaper was 28% greater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

722-727

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Galvin, M. M. Morshed, C. Cummins, S. Daniels, T. Lally, and B. J. MacDonald, Surface Modification of Absorbable Magnesium Stents by Reactive Ion Etching, Journal of Plasma Chemistry and Processing, vol. In Press, 2013.

DOI: 10.1007/s11090-013-9477-1

Google Scholar

[2] F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science, vol. 12, no. 5–6, p.63–72, 2008.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[3] N. D. Nam, M. Z. Bian, M. Forsyth, M. Seter, M. Tan, and K. S. Shin, Effect of calcium oxide on the corrosion behaviour of AZ91 magnesium alloy, Corrosion Science, vol. 64, p.263–271, Nov. 2012.

DOI: 10.1016/j.corsci.2012.07.026

Google Scholar

[4] A. Samaniego, I. Llorente, and S. Feliu, Combined effect of composition and surface condition on corrosion behaviour of magnesium alloys AZ31 and AZ61, Corrosion Science, vol. 68, p.66–71, Mar. 2013.

DOI: 10.1016/j.corsci.2012.10.034

Google Scholar

[5] X. N. Gu, W. R. Zhou, Y. F. Zheng, Y. Cheng, S. C. Wei, S. P. Zhong, T. F. Xi, and L. J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid, Acta Biomaterialia, vol. 6, no. 12, p.4605–4613, 2010.

DOI: 10.1016/j.actbio.2010.07.026

Google Scholar

[6] J. Geis-Gerstorfer, Ch. Schille, E. Schille, F. Rupp, L. Scheideler, H.-P. Reichel, Hort, A. Nolte, H.-P. Wendel, Blood triggered corrosion of magnesium alloys, Materials Science and Engineering B, 176 (2011) 1761-1766.

DOI: 10.1016/j.mseb.2011.06.006

Google Scholar

[7] M. Alvarez-Lopez, M. D. Pereda, J. A. del Valle, M. Fernandez-Lorenzo, M. C. Garcia-Alonso, O. A. Ruano, and M. L. Escudero, Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids, Acta Biomaterialia, vol. 6, no. 5, p.1763–1771, 2009.

DOI: 10.1016/j.actbio.2009.04.041

Google Scholar

[8] W. Wu, D. Gastaldi, K. Yang, L. Tan, L. Petrini, and F. Migliavacca, Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels, Materials Science and Engineering: B, vol. In Press, , 2011.

DOI: 10.1016/j.mseb.2011.03.013

Google Scholar

[9] J. A Grogan, S. B. Leen, and P. E. McHugh, Comparing coronary stent material performance on a common geometric platform through simulated bench testing, Journal of the mechanical behavior of biomedical materials, vol. 12, p.129–38, Aug. 2012.

DOI: 10.1016/j.jmbbm.2012.02.013

Google Scholar

[10] J. Lévesque, H. Hermawan, D. Dubé, and D. Mantovani, Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials, Acta biomaterialia, vol. 4, no. 2, p.284–95, Mar. 2008.

DOI: 10.1016/j.actbio.2007.09.012

Google Scholar

[11] A. Moitra, Grain size effect on microstructural properties of 3D nanocrystalline magnesium under tensile deformation, Computational Materials Science, vol. 79, p.247–51, Nov. 2013.

DOI: 10.1016/j.commatsci.2013.05.051

Google Scholar