[1]
M. Geetha, A.K. Singh, R. Askomanani, A.K. Gugia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mat. Sci. 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[2]
C. Leyens, M. Peters, Titanium and Titanium Alloys, WILEY-VCH Verlag, 2003.
Google Scholar
[3]
J.I. Qazi, H.J. Rack, B. Marquardt, High-strength metastable beta-titanium alloys for biomedical applications, JOM-J. Min. Met. Mat. S. 56 (2004) 49-51.
DOI: 10.1007/s11837-004-0253-9
Google Scholar
[4]
M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J Mech Behav Biomed Mat 1 (2008) 30-42.
Google Scholar
[5]
G. Lutjering, J.C. Williams, Titanium, Springer-Verlag, Berlin, Heidelberg, 2003, 2007.
Google Scholar
[6]
T. Ahmed, H.J. Rack, Low modulus biocompatible titanium base alloys for medical devices, United States Patent, 5,871,595, (1999)
Google Scholar
[7]
J.I. Qazi, B. Marquardt, L.F. Allard, H.J. Rack, Phase transformation in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys, Mat Sci Eng 25 (2005) 389 – 397.
DOI: 10.1016/j.msec.2005.01.022
Google Scholar
[8]
M. Mhaede, L. Wagner, K. Ibrahim, Thermomechanical treatments and surface treatments to enhance the mechanical properties and fatigue performance of recycled cp-Ti, J Mat. Res. 8 (2013), 713-720.
DOI: 10.3139/146.110920
Google Scholar
[9]
K. Ibrahim, M. Mhaede, L. Wagner, Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot Swaged cp-Ti Produced by Investment Casting, J Mater Eng Perform 21 (2012) 114-118.
DOI: 10.1007/s11665-010-9799-6
Google Scholar
[10]
S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, S.R. Seagle, Sillicide Formation in Ti-3Al-8V-6Cr-4Zr-4Mo, Metal. Trans. 18 (1987) 2015 – 2025.
DOI: 10.1007/bf02647074
Google Scholar
[11]
E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994)
Google Scholar
[12]
D. Vojtech, B. Bartova, T. Kubatik, High temperature oxidation of titanium–silicon alloys, Mat. Sci. Eng. A 361 (2003) 50–57.
Google Scholar
[13]
D.B. Lee, K.B. Park, H.W Jeong, S.E. Kim, Mechanical and oxidation properties of Ti-xFe-ySi alloys, Mat. Sci. Eng. 328 (2002) 161 – 168.
DOI: 10.1016/s0921-5093(01)01670-7
Google Scholar
[14]
H.S. Kim., W.Y. Kim, S.H. Lim, Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical applications, Scripta Mat. 54 (2006) 887 – 891.
DOI: 10.1016/j.scriptamat.2005.11.001
Google Scholar
[15]
M. Landa, J. Plesek, Contrast enhancement of ultrasonic imaging of internal stresses in materials, Ultrasonics 40 (2002) 531-535.
DOI: 10.1016/s0041-624x(02)00180-4
Google Scholar
[16]
M. Hansen, H.D. Kessler, D.J. McPherson, The titanium- silicon system, Trans. Am. Soc. Metals 44 (1952) 518-535.
Google Scholar
[17]
K. Chaudhuri, J.H. Perepezko, Microstructural Study of the Titanium Alloy Ti-15Mo-2.7Nb-3Al-0.2Si (TIMETAL 21S), Met. Mat. Trans. 25 (1994) 1109-1117.
DOI: 10.1007/bf02652286
Google Scholar
[18]
E.W. Collings, H.L. Gegel, J.C. Ho, Solid solution strengthening and fundamental design of titanium alloys, Air Force Materials Laboratory, AD-754240, 1972.
Google Scholar
[19]
X. Tang, T. Ahmed. H.J. Rack, Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, J. Mat. Sci. 35 (2000) 1805-1811.
Google Scholar
[20]
J. W. Christian, S. Mahajan Deformation twinning, Prog. Mat. Sci. 39 (1995) 1-157.
Google Scholar
[21]
E. Bertrand, P. Castany, I. Peron, T. Gloriant, Twinning system selection in a metastable b-titanium alloy by Schmid factor analysis, Scripta Mat. 64 (2011) 1110–1113.
DOI: 10.1016/j.scriptamat.2011.02.033
Google Scholar
[22]
X.H. Min, K. Tsuzaki, S.Emura, T.Sawaguchi, S.Ii, K.Tsuchiya, {332}〈113〉 Twinning system selection in a β-type Ti–15Mo–5Zr polycrystalline alloy, Mat. Sci. Eng. A 579 (2013) 164–169.
DOI: 10.1016/j.msea.2013.04.119
Google Scholar
[23]
X.H. Min, X.J. Chen, E. Satoshi, K. Tsuchiya, Mechanism of twinning-induced plasticity in b-type Ti–15Mo alloy, Scripta Mat. 69 (2013) 393–396.
DOI: 10.1016/j.scriptamat.2013.05.027
Google Scholar
[24]
S. Banerjee, U. M. Naik, Plastic instability in an omega forming Ti-15% Mo alloy, Acta Mat. 44 (1996) 3661-3671.
DOI: 10.1016/1359-6454(96)00012-2
Google Scholar
[25]
F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, (2008)
Google Scholar
[26]
X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, F. Yoshida, Yield-Point Phenomena of Ti-20V-4Al-1Sn at 1073K and Its Constitutive Modelling, Mat. Trans. 50 (2009) 1576 to 1578.
DOI: 10.2320/matertrans.m2009059
Google Scholar
[27]
R. J. Grylls, S. Banerjee, S. Perungulam, R. Wheeler, H. L. Fraser, On the discontinuous yielding phenomena observed in a Nb-Ti-Al alloy, Intermetallics 6 (1998) 149-752.
DOI: 10.1016/s0966-9795(98)00032-6
Google Scholar
[28]
I.S. Golovin, M.U. Kollerov, E.V. Schinaeva, The Study of Microplasticity Mechanism in Ti-50 wt.%Nb Alloy with High Hydrogen Content, J de Phys 6 (1996) 289-292.
DOI: 10.1051/jp4:1996862
Google Scholar