Plastic Deformation and Elastic Properties of Ti-Nb-Zr-Ta(-Fe-Si) Biomedical Alloys

Article Preview

Abstract:

Beta titanium alloys are promising biomedical material for their excellent biocompatibility and low elastic modulus. Moderate strength of those materials in beta-annealed condition can be increased by precipitation hardening of alpha phase, but this causes significant increase in elastic modulus. In this study, small additions of Fe and Si are used to increase strength of commercial Ti - 35Nb - 7Zr - 5Ta (TNZT) alloy. Alloys with iron content up to 2% and silicon content up to 1% were manufactured. Elastic properties were investigated by pulse-echo method and flow curves were determined from tensile tests. Modulus of elasticity is increases from initial 60 GPa to 80 GPa due to Fe and Si content. Strength and modulus of elasticity were then related to chemical composition. Yield stress is increased from 450 MPa to 700 MPa thanks to small Fe and Si additions. Fe causes solid solution strengthening exhibited by sharp yield point. (Ti,Zr)5Si3 intermetallic particles further increase strength via precipitation hardening. An alloy containing 0.5% Si and 2% Fe showed improved properties for biomedical use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

734-739

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Geetha, A.K. Singh, R. Askomanani, A.K. Gugia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mat. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[2] C. Leyens, M. Peters, Titanium and Titanium Alloys, WILEY-VCH Verlag, 2003.

Google Scholar

[3] J.I. Qazi, H.J. Rack, B. Marquardt, High-strength metastable beta-titanium alloys for biomedical applications, JOM-J. Min. Met. Mat. S. 56 (2004) 49-51.

DOI: 10.1007/s11837-004-0253-9

Google Scholar

[4] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J Mech Behav Biomed Mat 1 (2008) 30-42.

Google Scholar

[5] G. Lutjering, J.C. Williams, Titanium, Springer-Verlag, Berlin, Heidelberg, 2003, 2007.

Google Scholar

[6] T. Ahmed, H.J. Rack, Low modulus biocompatible titanium base alloys for medical devices, United States Patent, 5,871,595, (1999)

Google Scholar

[7] J.I. Qazi, B. Marquardt, L.F. Allard, H.J. Rack, Phase transformation in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys, Mat Sci Eng 25 (2005) 389 – 397.

DOI: 10.1016/j.msec.2005.01.022

Google Scholar

[8] M. Mhaede, L. Wagner, K. Ibrahim, Thermomechanical treatments and surface treatments to enhance the mechanical properties and fatigue performance of recycled cp-Ti, J Mat. Res. 8 (2013), 713-720.

DOI: 10.3139/146.110920

Google Scholar

[9] K. Ibrahim, M. Mhaede, L. Wagner, Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot Swaged cp-Ti Produced by Investment Casting, J Mater Eng Perform 21 (2012) 114-118.

DOI: 10.1007/s11665-010-9799-6

Google Scholar

[10] S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, S.R. Seagle, Sillicide Formation in Ti-3Al-8V-6Cr-4Zr-4Mo, Metal. Trans. 18 (1987) 2015 – 2025.

DOI: 10.1007/bf02647074

Google Scholar

[11] E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994)

Google Scholar

[12] D. Vojtech, B. Bartova, T. Kubatik, High temperature oxidation of titanium–silicon alloys, Mat. Sci. Eng. A 361 (2003) 50–57.

Google Scholar

[13] D.B. Lee, K.B. Park, H.W Jeong, S.E. Kim, Mechanical and oxidation properties of Ti-xFe-ySi alloys, Mat. Sci. Eng. 328 (2002) 161 – 168.

DOI: 10.1016/s0921-5093(01)01670-7

Google Scholar

[14] H.S. Kim., W.Y. Kim, S.H. Lim, Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical applications, Scripta Mat. 54 (2006) 887 – 891.

DOI: 10.1016/j.scriptamat.2005.11.001

Google Scholar

[15] M. Landa, J. Plesek, Contrast enhancement of ultrasonic imaging of internal stresses in materials, Ultrasonics 40 (2002) 531-535.

DOI: 10.1016/s0041-624x(02)00180-4

Google Scholar

[16] M. Hansen, H.D. Kessler, D.J. McPherson, The titanium- silicon system, Trans. Am. Soc. Metals 44 (1952) 518-535.

Google Scholar

[17] K. Chaudhuri, J.H. Perepezko, Microstructural Study of the Titanium Alloy Ti-15Mo-2.7Nb-3Al-0.2Si (TIMETAL 21S), Met. Mat. Trans. 25 (1994) 1109-1117.

DOI: 10.1007/bf02652286

Google Scholar

[18] E.W. Collings, H.L. Gegel, J.C. Ho, Solid solution strengthening and fundamental design of titanium alloys, Air Force Materials Laboratory, AD-754240, 1972.

Google Scholar

[19] X. Tang, T. Ahmed. H.J. Rack, Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, J. Mat. Sci. 35 (2000) 1805-1811.

Google Scholar

[20] J. W. Christian, S. Mahajan Deformation twinning, Prog. Mat. Sci. 39 (1995) 1-157.

Google Scholar

[21] E. Bertrand, P. Castany, I. Peron, T. Gloriant, Twinning system selection in a metastable b-titanium alloy by Schmid factor analysis, Scripta Mat. 64 (2011) 1110–1113.

DOI: 10.1016/j.scriptamat.2011.02.033

Google Scholar

[22] X.H. Min, K. Tsuzaki, S.Emura, T.Sawaguchi, S.Ii, K.Tsuchiya, {332}〈113〉 Twinning system selection in a β-type Ti–15Mo–5Zr polycrystalline alloy, Mat. Sci. Eng. A 579 (2013) 164–169.

DOI: 10.1016/j.msea.2013.04.119

Google Scholar

[23] X.H. Min, X.J. Chen, E. Satoshi, K. Tsuchiya, Mechanism of twinning-induced plasticity in b-type Ti–15Mo alloy, Scripta Mat. 69 (2013) 393–396.

DOI: 10.1016/j.scriptamat.2013.05.027

Google Scholar

[24] S. Banerjee, U. M. Naik, Plastic instability in an omega forming Ti-15% Mo alloy, Acta Mat. 44 (1996) 3661-3671.

DOI: 10.1016/1359-6454(96)00012-2

Google Scholar

[25] F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, (2008)

Google Scholar

[26] X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, F. Yoshida, Yield-Point Phenomena of Ti-20V-4Al-1Sn at 1073K and Its Constitutive Modelling, Mat. Trans. 50 (2009) 1576 to 1578.

DOI: 10.2320/matertrans.m2009059

Google Scholar

[27] R. J. Grylls, S. Banerjee, S. Perungulam, R. Wheeler, H. L. Fraser, On the discontinuous yielding phenomena observed in a Nb-Ti-Al alloy, Intermetallics 6 (1998) 149-752.

DOI: 10.1016/s0966-9795(98)00032-6

Google Scholar

[28] I.S. Golovin, M.U. Kollerov, E.V. Schinaeva, The Study of Microplasticity Mechanism in Ti-50 wt.%Nb Alloy with High Hydrogen Content, J de Phys 6 (1996) 289-292.

DOI: 10.1051/jp4:1996862

Google Scholar