Mechanical Properties of ZK60 Magnesium Alloy Processed by High-Pressure Torsion

Article Preview

Abstract:

Severe plastic deformation routes such as high-pressure torsion (HPT) are capable of producing ultrafine grain sizes in various alloys, specifically in magnesium alloys which exhibit poor ductility due to their hexagonal close-packed (hcp) crystal structure. HPT was performed on ZK60 magnesium alloy samples at room temperature under a pressure of 2.0 GPa up to 5 turns. The Vickers microhardness values were obtained from the centre to the edge of the disc samples and they show a slight hardness gradient with values which are lower at the centre of the samples and higher towards the edge. By increasing the numbers of turns in HPT, the hardness values increase to a saturation level and the gradient is removed. Tensile tests were performed at high temperatures and the results reveal a significant increase in elongation to failure as the numbers of turns in HPT increases. It is shown that microstructural analysis is in agreement with the results obtained from mechanical testing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

767-772

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Guo, H.G. Yan, H. Zhang, Z.H. Chen, Z.F. Wang, J. Mater. Sci. Technol. 21 (2005) 1349.

Google Scholar

[2] K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34 (1999) 2255

Google Scholar

[3] A.A. Luo, Int. Mater. Rev. 49 (2004) 13

Google Scholar

[4] R.B. Figueiredo, T.G. Langdon, Mater. Sci.Eng. A501 (2009) 105

Google Scholar

[5] R.B. Figueiredo, T.G. Langdon, Mater. Sci.Eng. A430 (2006) 151

Google Scholar

[6] C. Xu, K. Xia, T.G. Langdon, Mater. Sci. Eng. A527 (2009) 205

Google Scholar

[7] S.A. Torbati-Sarraf, R. Mahmudi, Mater. Sci. Eng. A527 (2010) 3515

Google Scholar

[8] Y. Harai, M. Kai, K. Kaneko, Z. Horita, T.G. Langdon, Mater. Trans. 49 (2008) 76

Google Scholar

[9] R.B. Figueiredo, T.G. Langdon, Adv. Eng. Mater. 10 (2008) 37

Google Scholar

[10] P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 45 (2010) 4561

Google Scholar

[11] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893

Google Scholar

[12] B. Li, S. Joshi, K. Azevedo, E. Ma, K.T. Ramesh, R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A517 (2009) 24

Google Scholar

[13] T.G. Langdon, J. Mater. Sci. 44 (2009) 5998

Google Scholar

[14] T.G. Langdon, Metal Sci 16 (1982) 176

Google Scholar

[15] Y. Huang, R.B. Figueiredo, T.G. Langdon, Rev. Adv. Mater. Sci. 31 (2012) 129

Google Scholar

[16] R.B. Figueiredo, T.G. Langdon, J Mater Sci 44 (2009) 4758

Google Scholar

[17] R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, B. Baudelet, Acta Mater. 44 (1996) 4705

Google Scholar

[18] R.B. Figueiredo, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, J. Mater. Sci. 47 (2012) 7807

Google Scholar

[19] Y. Huang, R.B. Figueiredo, T. Baudin, F. Brisset, T.G. Langdon, Adv. Eng. Mater. 14 (2012) 1018

Google Scholar

[20] S. Sabbaghianrad, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 47 (2012) 7789

Google Scholar

[21] P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev, T. G. Langdon, Phil. Mag. Lett. 78 (1998) 313

DOI: 10.1080/095008398177896

Google Scholar

[22] C. Xu, Z. Horita, T. G. Langdon, Acta Mater. 55 (2007) 203

Google Scholar