Electrospun Cellulose Triacetate Fibers Using DMSO/Chloroform Co-Solvent System

Article Preview

Abstract:

Nonwoven fibers of cellulose triacetate (CTA) were continuously electrospun by using DMSO/chloroform co-solvent system and the size and morphology of fibers were investigated. It was found that the concentration of 8wt% CTA fibers were obtained from DMSO/chloroform with volume ratio of 1:1, 3:2, 2:1, 3:1. The average diameters of CTA fiber was decreased with decreasing chloroform content in the mixed solvent. The minimum diameter of the continuous electrospun cellulose triacetate fibers obtained in this work ranged between 210 and 880 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Kriegel, A. Arrechi, K. Kit, D.J. McClements and J. Weiss, Critical reviews in food science and nutrition, 48, 775, (2008) 775-797.

DOI: 10.1080/10408390802241325

Google Scholar

[2] W.E. Teo and S. Ramakrishna, Nanotechnology, 17, 89, (2006) 89-106.

Google Scholar

[3] S. Ramakrishna, K. Fujihara, W. -E. Teo, T. Yong, Z. Ma and R. Ramaseshan, Materials Today, 9, 40, (2006) 40-50.

DOI: 10.1016/s1369-7021(06)71389-x

Google Scholar

[4] Rocktotpal Konwarh, Karak Niranjan, Manjusri Misra, Biotechnology advances, 31, 4, (2013) 421-437.

Google Scholar

[5] S.V. Guerra Nista, L. Peres, M.A. D'Avila, F.L. Schmidt and L.H. Innocentini Mei, Journal of Applied Polymer Science, 126 , 1, (2012) 70-78.

Google Scholar

[6] D. Haas, S. Heinrich and P. Greil, Journal of Materials Science, 45, 5, (2010) 1299-1306.

Google Scholar

[7] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrom, P. Westbroek and K. De Clerck, Journal of Materials Science, 44, 5, (2009) 1357-1362.

DOI: 10.1007/s10853-008-3010-6

Google Scholar

[8] S.O. Han, J.H. Youk, K.D. Min, Y.O. Kang and W.H. Park, Materials Letters, 62, 4-5, (2008) 759-762.

Google Scholar

[9] D. Klemm, B. Heublein, H. -P. Fink and A. Bohn, Angewandte Chemie International Edition, 44, 22, (2005) 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[10] Kawasaki. T, Yoshikawa. M, Desalination and Water Treatment, 51, 25-27, (2013) 1-9.

Google Scholar

[11] T.P.N. Nguyen, E. -T. Yun, I. -C. Kim and Y. -N. Kwon, J. Membr. Sci, 433, 49, (2013) 49-59.

Google Scholar

[12] E. Butler, A. Silva, K. Horton, Z. Rom, M. Chwatko, A. Havasov and J.R. McCutcheon, Desalination, 312, 23, (2013) 23-30.

DOI: 10.1016/j.desal.2012.12.013

Google Scholar

[13] P.B. Kajjari, L.S. Manjeshwar and T.M. Aminabhavi, Journal of Industrial and Engineering Chemistry, 50, 13, (2013).

Google Scholar

[14] S.O. Han, W.K. Son, J.H. Youk, T.S. Lee and W.H. Park, Materials Letters, 59, 24-25, (2005) 2998-3001.

DOI: 10.1016/j.matlet.2005.05.003

Google Scholar

[15] Y.I. Yoon, H.S. Moon, W.S. Lyoo, T.S. Lee and W.H. Park, Carbohydrate polymers, 75 , 2, (2009) 246-250.

Google Scholar