Synthesis and Hydrogen Absorption Capacity of Multilayered SnO2 Hollow Microspheres

Article Preview

Abstract:

Multilayered SnO2 hollow microspheres (MHS-SnO2) have been successfully synthesized via a solvothermal method by using glycol-water as solvent. The morphology, composition and structure of the product have been characterized by field-emission scanning electron microscopy (FESEM) with an energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) with selected area electron diffraction (SAED) and X-ray diffraction (XRD). The FESEM, TEM and HRTEM images indicate that the as-prepared microspheres show multilayered structure and the wall of the hollow microspheres is composed of single crystalline nanoparticles. Study on hydrogen absorption characteristics of MHS-SnO2 performed at 373 K shows a good absorption capacity of 0.85 wt.%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-60

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Nayral, T. Ould-Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzères and A. Peyre-Lavigne: Advanced Materials, Vol. 11 (1999) No. 1, p.61.

DOI: 10.1002/(sici)1521-4095(199901)11:1<61::aid-adma61>3.0.co;2-u

Google Scholar

[2] Y. Fukai, Y. Kondo, S. Mori and E. Suzuki: Electrochemistry Communications, Vol. 9 (2007) No. 7, p.1439.

Google Scholar

[3] W. -W. Wang, Y. -J. Zhu and L. -X. Yang: Advanced Functional Materials, Vol. 17 (2007) No. 1, p.59.

Google Scholar

[4] K. J. Pekarek, J. S. Jacob and E. Mathiowitz: Nature, Vol. 367 (1994) No. 6460, p.258.

Google Scholar

[5] J. Xie and V. K. Varadan: Materials Chemistry and Physics, Vol. 91 (2005) No. 2-3, p.274.

Google Scholar

[6] Y. Wang, F. Su, J. Y. Lee and X. S. Zhao: Chemistry of Materials, Vol. 18 (2006) No. 5, p.1347.

Google Scholar

[7] X. W. Lou, C. Yuan and L. A. Archer: Small, Vol. 3 (2007) No. 2, p.261.

Google Scholar

[8] H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai and Y. L. Cao: The Journal of Physical Chemistry C, Vol. 111 (2007) No. 38, p.14067.

Google Scholar

[9] d. Rafi ud, Q. Xuanhui, L. Ping, L. Zhang and M. Ahmad: The Journal of Physical Chemistry C, Vol. 115 (2011) No. 26, p.13088.

Google Scholar

[10] M. Z. Iqbal, F. Wang, M. Y. Rafique, S. Ali, M. H. Farooq and M. Ellahi: Materials Letters, Vol. 106 (2013) No. 0, p.33.

Google Scholar

[11] Q. Wan, C. L. Lin, X. B. Yu and T. H. Wang: Applied Physics Letters, Vol. 84 (2004) No. 1, p.124.

Google Scholar

[12] W. S. Khan, C. Cao, Z. Ali, F. K. Butt, N. Ahmad Niaz, A. Baig, R. ud Din, M. H. Farooq, F. Wang and Q. ul Ain: Materials Letters, Vol. 65 (2011) No. 14, p.2127.

DOI: 10.1016/j.matlet.2011.04.071

Google Scholar