One-Step Synthesis of Aqueous Graphene Dispersion Stabilized by Sodium Dodecylbenzene Sulfonate

Article Preview

Abstract:

Graphite oxide (GO), prepared by modified Hummer’s method from graphite, was reduced by hydrazine hydrate in the presence of sodium dodecylbenzene sulfonate (SDBS), leading to a concentrated aqueous graphene dispersion which was stable for more than one month. The analyses of XRD, UV-vis and Raman spectroscopy indicate that the reduced graphene oxide (RGO) was formed after chemical reaction, where single or multiple graphene sheets were observed by TEM and AFM, indicating that the RGO is well-dispersed in water through the operation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-51

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov, Nat. Mater., 6 (2007) 183-191.

Google Scholar

[2] P. Avouris, C. Dimitrakopoulos, Mater. Today, 15 (2012) 86-97.

Google Scholar

[3] M. Orlita, W. Escoffier, P. Plochocka, B. Raquet, U. Zeitler, Comptes Rendus Physique, 14 (2013) 78-93.

DOI: 10.1016/j.crhy.2012.11.003

Google Scholar

[4] M. Chi, Y. -P. Zhao, Comp. Mater. Sci., 56 (2012) 79-84.

Google Scholar

[5] P.L. Neumann, E. Tóvári, S. Csonka, K. Kamarás, Z.E. Horváth, L.P. Biró, Nucl. Instrum. Meth. B, 282 (2012) 130-133.

Google Scholar

[6] M. Batzill, Surf. Sci. Rep., 67 (2012) 83-115.

Google Scholar

[7] Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, J. Mech. Phys. Solids, 60 (2012) 591-605.

Google Scholar

[8] E. Jomehzadeh, M.K. Afshar, C. Galiotis, X. Shi, N.M. Pugno, Inter. J. Nonlin. Mech., 56 (2013) 123-131.

Google Scholar

[9] K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang, I.I. Barbolina, P. Blake, T.J. Booth, D. Jiang, J. Giesbers, E.W. Hill, A.K. Geim, Phys. Status Solidi B, 244 (2007) 4106-4111.

DOI: 10.1002/pssb.200776208

Google Scholar

[10] A.V. Rozhkov, G. Giavaras, Y.P. Bliokh, V. Freilikher, F. Nori, Phys. Rep., 503 (2011) 77-114.

DOI: 10.1016/j.physrep.2011.02.002

Google Scholar

[11] S. Park, R.S. Ruoff, Nat. Nanotechnol., 4 (2009) 217-224.

Google Scholar

[12] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol., 3 (2008) 101-105.

Google Scholar

[13] L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science, 335 (2012) 947-950.

DOI: 10.1126/science.1218461

Google Scholar

[14] S. Basu, P. Bhattacharyya, Sensor Actuat. B-Chem., 173 (2012) 1-21.

Google Scholar

[15] Y. Min, K. Zhang, W. Zhao, F. Zheng, Y. Chen, Y. Zhang, Chem. Engin. J., 193–194 (2012) 203-210.

Google Scholar

[16] B.F. Machado, P. Serp, Catal. Sci. Technol., 2 (2012) 54-75.

Google Scholar

[17] N.W. Li, M.B. Zheng, H.L. Lu, Z.B. Hu, C.F. Shen, X.F. Chang, G.B. Ji, J.M. Cao, Y. Shi, Chem. Commun., 48 (2012) 4106-4108.

Google Scholar

[18] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C, 113 (2009) 13103-13107.

Google Scholar

[19] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano. Lett., 8 (2008) 3498-3502.

Google Scholar

[20] A. Iwan, A. Chuchmała, Prog. Polym. Sci., 37 (2012) 1805-1828.

Google Scholar

[21] S. Vadukumpully, J. Paul, S. Valiyaveettil, Carbon, 47 (2009) 3288-3294.

Google Scholar

[22] D. Zhou, Q.Y. Cheng, B.H. Han, Carbon, 49 (2011) 3920-3927.

Google Scholar

[23] D. Tasis, K. Papagelis, P. Spiliopoulos, C. Galiotis, Mater. Lett., 94 (2013) 47-50.

Google Scholar

[24] R.J. Smith, M. Lotya, J.N. Coleman, New J. Phys., 12 (2010).

Google Scholar

[25] M.J. Fernandez-Merino, J.I. Paredes, S. Villar-Rodil, L. Guardia, P. Solis-Fernandez, D. Salinas-Torres, D. Cazorla-Amoros, E. Morallon, A. Martinez-Alonso, J.M.D. Tascon, Carbon, 50 (2012) 3184-3194.

DOI: 10.1016/j.carbon.2011.10.039

Google Scholar

[26] A.J. Glover, D.H. Adamson, H.C. Schniepp, J. Phys. Chem. C, 116 (2012) 20080-20085.

Google Scholar

[27] M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z.M. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc., 131 (2009) 3611-3620.

DOI: 10.1021/ja807449u

Google Scholar

[28] M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, Acs Nano, 4 3155-3162.

Google Scholar

[29] S. Das, A.S. Wajid, J.L. Shelburne, Y.C. Liao, M.J. Green, Acs Appl. Mater. Inter., 3 (2011) 1844-1851.

Google Scholar

[30] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339-1339.

Google Scholar

[31] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Acs Nano, 4 (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[32] H.J. Shin, K.K. Kim, A. Benayad, S. -M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater., 19 (2009) 1987-(1992).

DOI: 10.1002/adfm.200900167

Google Scholar

[33] M. Wojtoniszak, X.C. Chen, R.J. Kalenczuk, A. Wajda, J. Lapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Colloid Surface B, 89 (2012) 79-85.

DOI: 10.1016/j.colsurfb.2011.08.026

Google Scholar

[34] D.C. Luo, G.X. Zhang, J.F. Liu, X.M. Sun, J. Phys. Chem. C, 115 (2011) 11327-11335.

Google Scholar

[35] M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, J. Phys. Chem. C, 114 (2010) 6426-6432.

Google Scholar