[1]
Sun K., Jing Y., Park N., et al. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors, J. Am. Chem. Soc. 132(2010)15465.
DOI: 10.1021/ja1038424
Google Scholar
[2]
Fang F., Zhao D. X., Li B. H., et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification, Appl Phys Lett. 93(2008)233115.
DOI: 10.1063/1.3045952
Google Scholar
[3]
Feng C. H., Ruan S. P., Zhu L. H., et al. Chem. Res. Chinese Universities. 27(2001)720.
Google Scholar
[4]
Xu L., Wang R., Liu Y., et al. Influence of fabricating process on gas sensing properties of ZnO nanofiber-based sensors, Chin. Phys. Lett. 28(2011)040701.
DOI: 10.1088/0256-307x/28/4/040701
Google Scholar
[5]
Fang X., Li J. H., Zhao D.X., et al, Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p−n homojunction LED fabricated by hydrothermal method, J. Phys. Chem. C. 113(2009)21208.
DOI: 10.1021/jp906175x
Google Scholar
[6]
Wang L. D., Zhao D. X., Su Z. S., et al, Enhanced efficiency of polymer/ZnO nanorods hybrid solar cell sensitized by CdS quantum dots, J. Electrochem. Soc. 158 (2011)H804.
DOI: 10.1149/1.3598171
Google Scholar
[7]
Guo L., Zhang H., Zhao D. X., et al, The growth and the ultraviolet photoresponse properties of the horizontal growth ZnO nanorods, Mater. Lett. 65(2011)1495.
DOI: 10.1016/j.matlet.2011.02.051
Google Scholar
[8]
Yun S., Lim S. W., J, Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Solid State Chem. 184(2011)273.
Google Scholar
[9]
Gao J. Y., Zhao Q., Sun Y. H., et al, A novel way for synthesizing phosphorus-doped ZnO nanowires, Nanoscale Res. Lett. 45(2011)6.
DOI: 10.1007/s11671-010-9805-9
Google Scholar
[10]
You T. G., Yan J. F., Zhang Z. Y., et al, Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process, Mater. Lett. 66(2012)246.
DOI: 10.1016/j.matlet.2011.08.071
Google Scholar
[11]
Vayssieres L, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15(2003)464.
DOI: 10.1002/adma.200390108
Google Scholar
[12]
Li S., Leng J., Fan Y., et al, Mapping copy number variation by population-scale genome sequencing, Phys. Status. Solidi. A. 208(2011)114.
Google Scholar
[13]
Zhang X., Thavasi V., Mhaisalkar S. G., et al, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials, Nanoscale. 4(2012)1707.
DOI: 10.1039/c2nr11251e
Google Scholar
[14]
Dong F. X., Li Z. Y., Huang H. M., et al, High Surface Area Lithium Titanate Electrode for Li-ion Batteries, Mater. Lett. 61(2007)25-56.
Google Scholar
[15]
Tikekar N. M., Lannutti J. J, Effects of humidity on titania-based polyvinylpyrolidone (PVP) electrospun fibers, Ceram. Int. 38(2012)40-57.
DOI: 10.1016/j.ceramint.2012.01.063
Google Scholar
[16]
Azad A. M. Fabrication of yttria-stabilized zirconia nanofibers by electrospinning, Mater. Lett. 60(2006)67.
DOI: 10.1016/j.matlet.2005.07.085
Google Scholar
[17]
Fang F., Zhao D. X., Li B. H., et al. A detailed approach to study the antibacterial mechanisms of nanostructure, Appl. Surf. Sci. 257(2011)33-74.
Google Scholar
[18]
Ramon C., Esther A. L., Jordi I., Luis A, Temperature dependence of Raman scattering in ZnO, Phys. Rev. B. 75(2007)165-202.
Google Scholar