The Growth and Optical Properties of Al-Doped ZnO Nanofibers Using PVP Nanofibers as Templates by Atom Layer Deposition

Article Preview

Abstract:

Different doping concentration Al-doped ZnO nanofibers were synthesized by Atom Layer Deposition (ALD) using PVP fibers as template. The influence of Al doping concentration on the structure and optical properties of nanofibers was investigated. The samples were characterized by means of X-ray diffraction spectra, field emission scanning electron microscopy (FESEM). After doping, the morphologies were not changed, only the diameters of Al-doped ZnO nanofibers became larger. Compared with undoped ZnO, the intensity of diffractive peaks of Al-doped ZnO nanofibers became weak with the increasing of the doping concentration due to stress generation in the crystallization process. In raman spectra, Al2O3 peak related peaks were also observed. In addition, the intensity of UV emission decreased with increasing Al doping concentration and had a red shift.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sun K., Jing Y., Park N., et al. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors, J. Am. Chem. Soc. 132(2010)15465.

DOI: 10.1021/ja1038424

Google Scholar

[2] Fang F., Zhao D. X., Li B. H., et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification, Appl Phys Lett. 93(2008)233115.

DOI: 10.1063/1.3045952

Google Scholar

[3] Feng C. H., Ruan S. P., Zhu L. H., et al. Chem. Res. Chinese Universities. 27(2001)720.

Google Scholar

[4] Xu L., Wang R., Liu Y., et al. Influence of fabricating process on gas sensing properties of ZnO nanofiber-based sensors, Chin. Phys. Lett. 28(2011)040701.

DOI: 10.1088/0256-307x/28/4/040701

Google Scholar

[5] Fang X., Li J. H., Zhao D.X., et al, Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p−n homojunction LED fabricated by hydrothermal method, J. Phys. Chem. C. 113(2009)21208.

DOI: 10.1021/jp906175x

Google Scholar

[6] Wang L. D., Zhao D. X., Su Z. S., et al, Enhanced efficiency of polymer/ZnO nanorods hybrid solar cell sensitized by CdS quantum dots, J. Electrochem. Soc. 158 (2011)H804.

DOI: 10.1149/1.3598171

Google Scholar

[7] Guo L., Zhang H., Zhao D. X., et al, The growth and the ultraviolet photoresponse properties of the horizontal growth ZnO nanorods, Mater. Lett. 65(2011)1495.

DOI: 10.1016/j.matlet.2011.02.051

Google Scholar

[8] Yun S., Lim S. W., J, Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Solid State Chem. 184(2011)273.

Google Scholar

[9] Gao J. Y., Zhao Q., Sun Y. H., et al, A novel way for synthesizing phosphorus-doped ZnO nanowires, Nanoscale Res. Lett. 45(2011)6.

DOI: 10.1007/s11671-010-9805-9

Google Scholar

[10] You T. G., Yan J. F., Zhang Z. Y., et al, Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process, Mater. Lett. 66(2012)246.

DOI: 10.1016/j.matlet.2011.08.071

Google Scholar

[11] Vayssieres L, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15(2003)464.

DOI: 10.1002/adma.200390108

Google Scholar

[12] Li S., Leng J., Fan Y., et al, Mapping copy number variation by population-scale genome sequencing, Phys. Status. Solidi. A. 208(2011)114.

Google Scholar

[13] Zhang X., Thavasi V., Mhaisalkar S. G., et al, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials, Nanoscale. 4(2012)1707.

DOI: 10.1039/c2nr11251e

Google Scholar

[14] Dong F. X., Li Z. Y., Huang H. M., et al, High Surface Area Lithium Titanate Electrode for Li-ion Batteries, Mater. Lett. 61(2007)25-56.

Google Scholar

[15] Tikekar N. M., Lannutti J. J, Effects of humidity on titania-based polyvinylpyrolidone (PVP) electrospun fibers, Ceram. Int. 38(2012)40-57.

DOI: 10.1016/j.ceramint.2012.01.063

Google Scholar

[16] Azad A. M. Fabrication of yttria-stabilized zirconia nanofibers by electrospinning, Mater. Lett. 60(2006)67.

DOI: 10.1016/j.matlet.2005.07.085

Google Scholar

[17] Fang F., Zhao D. X., Li B. H., et al. A detailed approach to study the antibacterial mechanisms of nanostructure, Appl. Surf. Sci. 257(2011)33-74.

Google Scholar

[18] Ramon C., Esther A. L., Jordi I., Luis A, Temperature dependence of Raman scattering in ZnO, Phys. Rev. B. 75(2007)165-202.

Google Scholar