Influences of Preparation Process on the Orientation and Properties of PZT Piezoelectric Thick Film Generation Materials

Article Preview

Abstract:

Abstract: As it's excellent mechanical and electrical conversion characteristics, Piezoelectric material has become an important material for capturing environmental mechanical energy to get electrical energy. In this paper, (100) oriented PZT piezoelectric thick film has been prepared on Pt/Cr/SiO2/Si substrate by sol-gel used PT as transition layer. The influences of preparation process on the (100) oriented degree, ferroelectric properties, dielectric properties and piezoelectric properties of PZT piezoelectric thick film were investigated. Experiment results show that, the increasing of annealing temperature and shortening annealing time can promote PZT piezoelectric thick film growing along (100) orientation. The increasing of annealing temperature results in the decreasing of remnant polarization intensity and increasing of coercive field. Under the frequency of 1 KHz, (100) oriented PZT piezoelectric thick film with thickness of 1.5 m has the dielectric constant ˰̶̿˰́̃̅̆˼˰̈̃́˰̴̱̾˰̇̈̀˰̱̈́˰̵̷̱̱̼̹̾̾̾˰̵̹̈́̽˰̶̿˰̹̅̽̾˼˰̹́̀̽̾˰̴̱̾˰̹́̅̽̾˼˰̴̱̾˰̴̵̵̹̼̳̹̳̈́͂˰̴̹̹̱̹̓̓̀̈́̿̾˰̱̈́̾ڄ˰̹̓˰̀˾̃́£¬0.20 and 0.22, respectively. (100) orientation of PZT piezoelectric thick film can effectively improve the piezoelectric properties of PZT piezoelectric thick film, PZT piezoelectric thick film with thickness of 1.5 m and annealing time of 5min has the better (100) orientation degree, has the piezoelectric constant d33 of 102.5 pC/N. Keywords: (100) orientation; PZT generation material; ferroelectric properties; dielectric properties; piezoelectric properties

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-35

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. W. Yan, Z. G. Yang, J. W. Kan, G. M. Cheng, and P. Zeng, Energy conversion system with piezoelectric ceramic, Journal of Jilin University(Engineering and Technology Edition), Vol. 38, No. 2, pp.344-348, March (2008).

Google Scholar

[2] L. R. Zheng, Y. Q. Chen, C. L. Lin, and S. C. Zou, Pulsed Laser Deposition of New Ferroelectric Memory and Ferroelectric Thin Films, Physical, Vol. 24, No. 2, pp.43-47, (1995).

Google Scholar

[3] R.W. Whatmore, Q. Zhang, Z. Huang, and R. A. Dorey, Ferroelectric thin and thick films for Microsystems, Mater Sci in Semiconductor Processing, Vol. 5, pp.: 65-76, (2003).

DOI: 10.1016/s1369-8001(02)00085-9

Google Scholar

[4] C. Li, S. Mantall, and D. Polla, Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sensors and Actuators A, Vol. 94, p.117, (2001).

DOI: 10.1016/s0924-4247(01)00680-x

Google Scholar

[5] H. Kueppers, T. Leuerer, U. Schnakenberg,W. Mokwa, M. Hoffmann, T. Schneller, et al, PZT thin films for piezoelectric microactuator applications, Sensors and Actuators A, Vol. 97-98, p.680, (2002).

DOI: 10.1016/s0924-4247(01)00850-0

Google Scholar

[6] T. Yan, B. E. Jones, R. T. Rakowski, M. J. Tudor, S. P. Beeby, and N. M. White, Design and fabrication of thick film PZT-metallic triple beam resonators, Sensors and Actuators A, Vol. 115, pp.401-407, (2004).

DOI: 10.1016/j.sna.2004.04.048

Google Scholar

[7] K. Kakimoto, H. Kakemoto, S. Fujita, and Y. Masuda, Control of Crystal Orientation and Piezoelectric Response of Lead Zirconate Titanate Thin Films Near the Morphotropic Phase Boundary, J Am Ceram Soc, Vol. 85, No. 4, pp.1019-1021, (2002).

DOI: 10.1111/j.1151-2916.2002.tb00215.x

Google Scholar

[8] D. V. Taylor, and D. Damjanovic, Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and "random" crystallographic orientation, Appl Phys Lett, Vol. 76, pp.1615-1617, (2000).

DOI: 10.1063/1.126113

Google Scholar

[9] F. Xu, S. Trolier-McKinstry, W. Ren, and B. Xu, Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films, J Appl Phys, Vol. 89, p.1336, (2001).

DOI: 10.1063/1.1325005

Google Scholar

[10] S. Okamoto, S. Yokoyama, Y. Honda, G. Asano, and H. Funakubo, Crystal orientation dependence on electrical properties of Pb(Zr, Ti)O3 thick films grown on Si substrate by metalorganic chemical vapor deposition, Jpn.J. Appl. Phys, Vol. 43, pp.6567-6570, (2004).

DOI: 10.1143/jjap.43.6567

Google Scholar

[11] S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, and T. Iijima, Dependence of electrical properties of epitaxial Pb(Zr, Ti)O3 thick films on crystal orientation and Zr/(Zr+Ti) ratio, J. Appl. Phys, Vol. 98, p.094106, (2005).

DOI: 10.1063/1.2126156

Google Scholar

[12] X. H. Du. J. Zheng, U. Belegundu. and K. Uchino, Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Appl Phys Lett, Vol. 72, p.2421, (1998).

DOI: 10.1063/1.121373

Google Scholar

[13] Z.X. Duan, J. Yuan, Q.L. Zhao, R. LU, and M.S. Cao, Oriented Growth of PZT thick f ilm embedded with PZT nanoparticles, Journal of Harbin Institute of Technology (New Series), Vol. 16, pp.232-236, (2009).

Google Scholar

[14] A. Kudo, and H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting, J Chemical Physics Letters, Vol. 331, pp.373-377, (2000).

DOI: 10.1016/s0009-2614(00)01220-3

Google Scholar

[15] K. Kushida, K. R. Udayakumar, S. B. Krupanidhi, and L. E. Cross, Origin of Orientation in Sol-Gel Derived PT Films, J. Am. Ceram. Soc., Vol. 76, No. 5, p.1345, (1993).

DOI: 10.1111/j.1151-2916.1993.tb03763.x

Google Scholar

[16] K. G. Brooks, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, Orientation of Rapid Thermally Annealed Lead-Zirconate-Titanate Thin-Films on (111) Pt Substrates, J. Mater. Res, Vol. 9, No. 10, pp.2540-2553, (1994).

DOI: 10.1557/jmr.1994.2540

Google Scholar

[17] H. Wen, Study on preparation and properties of high curie temperature perovskite structure piezoelectric thin films, Tsinghua University: Beijing, 2007, pp.96-97.

Google Scholar

[18] Y. Sakashita, H. Segawa, K. Tominaga, and M. Okada, Dependence of electrical properties on film thickness in Pb(ZrxTi1 -x)O3 thin films produced by metalorganic chemical vapor deposition, J. Appl. Phys., Vol. 73, No. 11, pp.7857-7863, (1993).

DOI: 10.1063/1.353936

Google Scholar

[19] R. Bouregba, a G. Le Rhun, G. Poullain, and G. Leclerc, Investigation of thickness dependence of the ferroelectric properties of Pb(Zr0 . 6Ti0 . 4)O3 thin-film capacitors, J. Appl. Phys., Vol. 99, p.034102, (2006).

DOI: 10.1063/1.2170414

Google Scholar

[20] T. Hase , T. Sakuma , Y. Miyasaka , K. Hirata, and N. Hosokawa , Preparation of Pb(Zr, Ti)O3 Thin Films by Multi-Target Sputtering, Jpn. J. Appl. Phys., Vol. 32, pp.4061-4064, (1993).

DOI: 10.1143/jjap.32.4061

Google Scholar

[21] L. Pintilie, Extrinsic contributions to the apparent thickness dependence of the dielectric constant in epitaxial Pb(Zr, Ti)O3 thin films, PHYSICAL REVIEW B, Vol. 75, No. 22, p.224113. 1-224113. 12, (2007).

Google Scholar

[22] C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, and U. Goesele. Quantitative, ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films,, Appl. Phys. A: Mater. Sci. Process., Vol. 70, pp.261-267, (2000).

DOI: 10.1007/s003390050045

Google Scholar

[23] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., Vol. 61, pp.1267-1324, (1998).

DOI: 10.1088/0034-4885/61/9/002

Google Scholar

[24] A.F. Devonshire, Theory of barium titanate–Part II, Philos. Mag., Vol. 42, pp.1065-1079, (1951).

Google Scholar