[1]
S. W. Yan, Z. G. Yang, J. W. Kan, G. M. Cheng, and P. Zeng, Energy conversion system with piezoelectric ceramic, Journal of Jilin University(Engineering and Technology Edition), Vol. 38, No. 2, pp.344-348, March (2008).
Google Scholar
[2]
L. R. Zheng, Y. Q. Chen, C. L. Lin, and S. C. Zou, Pulsed Laser Deposition of New Ferroelectric Memory and Ferroelectric Thin Films, Physical, Vol. 24, No. 2, pp.43-47, (1995).
Google Scholar
[3]
R.W. Whatmore, Q. Zhang, Z. Huang, and R. A. Dorey, Ferroelectric thin and thick films for Microsystems, Mater Sci in Semiconductor Processing, Vol. 5, pp.: 65-76, (2003).
DOI: 10.1016/s1369-8001(02)00085-9
Google Scholar
[4]
C. Li, S. Mantall, and D. Polla, Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sensors and Actuators A, Vol. 94, p.117, (2001).
DOI: 10.1016/s0924-4247(01)00680-x
Google Scholar
[5]
H. Kueppers, T. Leuerer, U. Schnakenberg,W. Mokwa, M. Hoffmann, T. Schneller, et al, PZT thin films for piezoelectric microactuator applications, Sensors and Actuators A, Vol. 97-98, p.680, (2002).
DOI: 10.1016/s0924-4247(01)00850-0
Google Scholar
[6]
T. Yan, B. E. Jones, R. T. Rakowski, M. J. Tudor, S. P. Beeby, and N. M. White, Design and fabrication of thick film PZT-metallic triple beam resonators, Sensors and Actuators A, Vol. 115, pp.401-407, (2004).
DOI: 10.1016/j.sna.2004.04.048
Google Scholar
[7]
K. Kakimoto, H. Kakemoto, S. Fujita, and Y. Masuda, Control of Crystal Orientation and Piezoelectric Response of Lead Zirconate Titanate Thin Films Near the Morphotropic Phase Boundary, J Am Ceram Soc, Vol. 85, No. 4, pp.1019-1021, (2002).
DOI: 10.1111/j.1151-2916.2002.tb00215.x
Google Scholar
[8]
D. V. Taylor, and D. Damjanovic, Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and "random" crystallographic orientation, Appl Phys Lett, Vol. 76, pp.1615-1617, (2000).
DOI: 10.1063/1.126113
Google Scholar
[9]
F. Xu, S. Trolier-McKinstry, W. Ren, and B. Xu, Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films, J Appl Phys, Vol. 89, p.1336, (2001).
DOI: 10.1063/1.1325005
Google Scholar
[10]
S. Okamoto, S. Yokoyama, Y. Honda, G. Asano, and H. Funakubo, Crystal orientation dependence on electrical properties of Pb(Zr, Ti)O3 thick films grown on Si substrate by metalorganic chemical vapor deposition, Jpn.J. Appl. Phys, Vol. 43, pp.6567-6570, (2004).
DOI: 10.1143/jjap.43.6567
Google Scholar
[11]
S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, and T. Iijima, Dependence of electrical properties of epitaxial Pb(Zr, Ti)O3 thick films on crystal orientation and Zr/(Zr+Ti) ratio, J. Appl. Phys, Vol. 98, p.094106, (2005).
DOI: 10.1063/1.2126156
Google Scholar
[12]
X. H. Du. J. Zheng, U. Belegundu. and K. Uchino, Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Appl Phys Lett, Vol. 72, p.2421, (1998).
DOI: 10.1063/1.121373
Google Scholar
[13]
Z.X. Duan, J. Yuan, Q.L. Zhao, R. LU, and M.S. Cao, Oriented Growth of PZT thick f ilm embedded with PZT nanoparticles, Journal of Harbin Institute of Technology (New Series), Vol. 16, pp.232-236, (2009).
Google Scholar
[14]
A. Kudo, and H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting, J Chemical Physics Letters, Vol. 331, pp.373-377, (2000).
DOI: 10.1016/s0009-2614(00)01220-3
Google Scholar
[15]
K. Kushida, K. R. Udayakumar, S. B. Krupanidhi, and L. E. Cross, Origin of Orientation in Sol-Gel Derived PT Films, J. Am. Ceram. Soc., Vol. 76, No. 5, p.1345, (1993).
DOI: 10.1111/j.1151-2916.1993.tb03763.x
Google Scholar
[16]
K. G. Brooks, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, Orientation of Rapid Thermally Annealed Lead-Zirconate-Titanate Thin-Films on (111) Pt Substrates, J. Mater. Res, Vol. 9, No. 10, pp.2540-2553, (1994).
DOI: 10.1557/jmr.1994.2540
Google Scholar
[17]
H. Wen, Study on preparation and properties of high curie temperature perovskite structure piezoelectric thin films, Tsinghua University: Beijing, 2007, pp.96-97.
Google Scholar
[18]
Y. Sakashita, H. Segawa, K. Tominaga, and M. Okada, Dependence of electrical properties on film thickness in Pb(ZrxTi1 -x)O3 thin films produced by metalorganic chemical vapor deposition, J. Appl. Phys., Vol. 73, No. 11, pp.7857-7863, (1993).
DOI: 10.1063/1.353936
Google Scholar
[19]
R. Bouregba, a G. Le Rhun, G. Poullain, and G. Leclerc, Investigation of thickness dependence of the ferroelectric properties of Pb(Zr0 . 6Ti0 . 4)O3 thin-film capacitors, J. Appl. Phys., Vol. 99, p.034102, (2006).
DOI: 10.1063/1.2170414
Google Scholar
[20]
T. Hase , T. Sakuma , Y. Miyasaka , K. Hirata, and N. Hosokawa , Preparation of Pb(Zr, Ti)O3 Thin Films by Multi-Target Sputtering, Jpn. J. Appl. Phys., Vol. 32, pp.4061-4064, (1993).
DOI: 10.1143/jjap.32.4061
Google Scholar
[21]
L. Pintilie, Extrinsic contributions to the apparent thickness dependence of the dielectric constant in epitaxial Pb(Zr, Ti)O3 thin films, PHYSICAL REVIEW B, Vol. 75, No. 22, p.224113. 1-224113. 12, (2007).
Google Scholar
[22]
C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, and U. Goesele. Quantitative, ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films,, Appl. Phys. A: Mater. Sci. Process., Vol. 70, pp.261-267, (2000).
DOI: 10.1007/s003390050045
Google Scholar
[23]
D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., Vol. 61, pp.1267-1324, (1998).
DOI: 10.1088/0034-4885/61/9/002
Google Scholar
[24]
A.F. Devonshire, Theory of barium titanate–Part II, Philos. Mag., Vol. 42, pp.1065-1079, (1951).
Google Scholar