Photochromic Behavior of Spiropyrans: The Effect of Substituent

Article Preview

Abstract:

Spiropyrans are among the most promising organic photochromic dyes. However, spiropyrans are very sensitive dyes and there are many independent factors that can affect the performance of these dyes. The effect of substituent on the optical absorption spectra, fading kinetic, and also the dye stability of spiropyrans in diphenyl ether by UV irradiation has been investigated. The 6-nitro BIPS displayed greater absorbance intensity of 0.740% at 600nm compared to 8-ethoxy-6-nitro BIPS of 0.651% at 620nm. Furthermore, 6-nitro BIPS is less stable as it has higher rate constant of 0.1003s-1 and thus lower half-life time (50% decay of the photochromic effect) of 6.9s, in contrast to 8-ethoxy-6-nitro BIPS of 0.0594s-1 and 11.7s respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Irie, Photochromism: memories and switches – introduction, Chem. Rev. 100 (2000) 1683-1684.

Google Scholar

[2] A. Pościk, B. Wandelt, Application of a photochromic dye in an automatic welding filter, Int. J. Occup. Saf. Ergon. 15 (2009) 243-54.

DOI: 10.1080/10803548.2009.11076805

Google Scholar

[3] R.M. Tarkka, M.E. Talbot, D.J. Brady, G.B. Schuster, Holographic storage in a near-ir sensitive photochromic dye, Opt. Commun. 109 (1994) 54-58.

DOI: 10.1016/0030-4018(94)90737-4

Google Scholar

[4] S.S. Xue, G. Manivannan, R.A. Lessard, Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films, Thin Solid Films 253 (1994) 228-232.

DOI: 10.1016/0040-6090(94)90325-5

Google Scholar

[5] N. Shao, J.Y. Jin, H. Wang, Y. Zhang, R.H. Yang, W.H. Chan, Tunable photochromism of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion, Anal. Chem. 80 (2008) 3466-3475.

DOI: 10.1021/ac800072y

Google Scholar

[6] S. Yagi, S. Nakamura, D. Watanabe, H. Nakazumi, Colorimetric sensing of metal ions by bis(spiropyran) podands: towards naked-eye detection of alkaline earth metal ions, Dyes Pigm. 80 (2009) 98-105.

DOI: 10.1016/j.dyepig.2008.05.012

Google Scholar

[7] P.J. Coelho, L.M. Carvalho, L.F.F.F. Gonçalves, C.J.R. Silva, A.M. Campos, M.J. Gomes, Photochromic hybrid sol-gel films containing naphthopyrans, J. Sol-Gel Sci. Technol. 56 (2010) 203-211.

DOI: 10.1007/s10971-010-2295-5

Google Scholar

[8] G. Schulze, K.J. Franke, J. I Pascual, Induction of a photostationary ring-opening-ring-closing state of spiropyran monolayers on the semimetallic Bi(110) surface, Phys. Rev. Lett. 109 (2012) 026102.

DOI: 10.1103/physrevlett.109.026102

Google Scholar

[9] N.P. Ernsting, B. Dick, T. Arthen-Engeland, The primary photochemical reaction step of unsubstituted indolino-spiropyrans, Pure Appl. Chem. 62 (1990) 1483-1488.

DOI: 10.1351/pac199062081483

Google Scholar

[10] T. Satoh, K. Sumaru, T. Takagi, K. Takai, T. Kanamori, Isomerization of spirobenzopyrans bearing electron-donating and electron-withdrawing groups in acidic aqueous solutions, Phys. Chem. Chem. Phys. 13 (2011) 7322-7329.

DOI: 10.1039/c0cp01989e

Google Scholar

[11] Y. Atassi, J.A. Delaire, K. Nakatani, Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazine-doped polymer films, J. Phys. Chem. B 99 (1995) 16320-16326.

DOI: 10.1021/j100044a019

Google Scholar

[12] R. Guglielmetti, 4n+2 systems: spiropyrans, in: H. Dürr, H. Bouas-Laurent (Eds. ), Photochromoism: Molecules and Systems (revised edn), Elsevier, Amsterdam, 2003, pp.314-466.

DOI: 10.1016/b978-044451322-9/50012-9

Google Scholar

[13] D.J. McGarvey, Industry-linked context-based chemistry practicals, New Directions (2006) 57-64.

Google Scholar

[14] Y. Sheng, J. Leszczynski, A.A. Garcia, R. Rosario, D. Gust, J. Springer, Comprehensive theoretical study of the conversion reactions of spiropyrans: substituent and solvent effects, J. Phys. Chem. B 108 (2004) 16233-16243.

DOI: 10.1021/jp0488867

Google Scholar

[15] S.R. Keum, K.B. Lee, P.M. Kazmaier, E. Buncel, A novel method for measurement of the merocyanine-spiropyran interconversion in non-activated 1, 3, 3-trimethylspiro-(2H-l-benzopyran-2, 2'-indoline) derivatives, Tetrahedron Lett. 35 (1994).

DOI: 10.1016/s0040-4039(00)79953-9

Google Scholar

[16] V.A. Barachevsky, Photofluorochromic spirocompounds and their application, J. Fluoresc. 10 (2000) 185-191.

Google Scholar

[17] R.M. Negri, H.E. Prypsztejn, An experiment on photochromism and kinetics for the undergraduate laboratory, J. Chem. Ed. 78 (2001) 645-648.

DOI: 10.1021/ed078p645

Google Scholar

[18] K. Shen, J.H. Kim, G.W. Kim, M.J. Cho, S.K. Lee, D.H. Choi, Photochromic behavior and its stability of a new bifunctional dye composed of spirobenzopyran and a cinnamoyl moiety, Macromol. Res. 13 (2005) 180-186.

DOI: 10.1007/bf03219050

Google Scholar

[19] B.H. Lee, J.H. Kim, M.J. Cho, S.H. Lee, D.H. Choi, Photochromic behavior of spiropyran in the photoreactive polymer containing chalcone moieties, Dyes Pigm. 61 (2004) 235-242.

DOI: 10.1016/j.dyepig.2003.10.013

Google Scholar