Studies on the Geometric and Electronic Structures of SiC Polytypes

Article Preview

Abstract:

SiC poly-type geometric structure, electronic structure and energy have been subjected to systematic study based on first principle calculation method given in density functional theory. After calculation, the energy results show that 4H-SiC system energy is the lowest and stablest, while 2H-SiC system energy is the highest and unstablest; the calculation results of the band structure show that six SiC poly-types are indirect wide band gap semiconductor, with valence band top on point Γ of Brillouin zone, conduction band bottom on point M of Brillouin zone; with the increase of hexagonality, the energy gap and valence band width are gradually getting smaller, with largest splitting of orbital energy level on 2H-SiC valence band top, reaching to 0.122 eV, while the splitting of orbital energy level on 8H-SiC valence band top is the smallest, with 0.027 eV only.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

234-237

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Matsunami: Micro. electron. Eng, Vol. 83 (2006), p.2.

Google Scholar

[2] C.L. Guo and C.L. Kuo: Sci. Bull. Vol, 41 (1996), p.1666.

Google Scholar

[3] T.L. Daulton, T.J. Bernatowicz, R.S. Lewis, et al: Science, Vol. 296 (2002), p.1852.

Google Scholar

[4] C.R. Eddy and Jr.D.K. Gaskill: Science, Vol. 324 (2009), p.1398.

Google Scholar

[5] G. Dhanaraj, M. Dudley, Y. Chen, et al: Journal of Crystal Growth, Vol. 287 (2006), p.344.

Google Scholar

[6] J. J. Niu, J. N. Wang and N. S. Xu: Solid State Sciences, Vol. 10 (2008), p.618.

Google Scholar

[7] H. Huanga, K. J. Winchester: Materials Science and Engineering A, Vol. 435–436 (2006), p.453.

Google Scholar

[8] S.Y. Zhang H.Y. Li,L. Li, et al: App. Phys. Lett, Vol. 91 (2007), p.251905.

Google Scholar

[9] D. Zhou and S. Seraphin: Phys. Lett, Vol. 222 (1994), p.233.

Google Scholar

[10] S. J. Clark, M. D. Segall, C. J. Pickard, et al: Zeitschrift fuer Kristallographie, Vol. 220 (2005), p.567.

Google Scholar

[11] Y. Wang and J. P. Perdew: Phys. Rev. B, Vol. 44 (1991), p.013298.

Google Scholar

[12] K.J. Chang and M.L. Cohen: Phys. Rev. B, Vol. 35 (1987), p.196.

Google Scholar

[13] P. Kackell, B. Wenzien and F. Bechstedt: Phys. Rev. B, Vol. 50 (1994), p.17037.

Google Scholar

[14] V. Munch, New Series, in: Groups IV and III-V, Vol. 17, Pt. A (Springer, Berlin, 1982).

Google Scholar

[15] W.R.L. Lambrecht, B. Segall, M. Methfessel, et al: Phys. Rev. B, Vol. 44 (1991), p.3685.

Google Scholar

[16] C. H. Park, B. H. Cheong, K. H. Lee, et al: Phys. Rev. B, Vol. 49 (1994), p.4485.

Google Scholar

[17] R.G. Humphreys, D. Bimberg and W. J. Choyke: Solid. State. Com, Vol. 39 (1981), p.163.

Google Scholar

[18] Landolt-Börnstein, in: Numerical and Functional Relationships in Science and Technology, edited by K. H. Hellwege (Spring-Verlag, Berlin, 1982).

Google Scholar