Synthesis and Characteristics of Hierarchical Nanostructure Fe3O4 Coated Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

258-261

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Correa-Duarte, N. Sobal, L.M. Liz-Marzán, M. Giersig, Linear Assemblies of Silica-Coated Gold Nanoparticles Using Carbon Nanotubes as Templates, Adv. Mater., 16 (2004) 2179-2184.

DOI: 10.1002/adma.200400626

Google Scholar

[2] D. Eder, Carbon nanotube-inorganic hybrids, Chem. rev., 110 (2010) 1348-1385.

DOI: 10.1021/cr800433k

Google Scholar

[3] G. Lu, L.E. Ocola, J. Chen, Room‐Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes, Adv. Mater., 21 (2009) 2487-2491.

DOI: 10.1002/adma.200803536

Google Scholar

[4] L. Dang, G. Zhang, K. Kan, Y. Lin, F. Bai, L. Jing, P.K. Shen, L. Li, K. Shi, Heterostructured Co3O4/PEI-CNTs Composite: Fabrication, Characterization and CO Gas Sensors at Room Temperature, J. Mater. Chem. A, (2014).

DOI: 10.1039/c3ta15019d

Google Scholar

[5] Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Hierarchical Silicon Etched Structures for Controlled Hydrophobicity/Superhydrophobicity, Nano Lett., 7 (2007) 3388-3393.

DOI: 10.1021/nl0717457

Google Scholar

[6] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Super‐hydrophobic surfaces: from natural to artificial, Adv. Mate., 14 (2002) 1857-1860.

DOI: 10.1002/adma.200290020

Google Scholar

[7] H. Cao, J.O. Tegenfeldt, R.H. Austin, S.Y. Chou, Gradient nanostructures for interfacing microfluidics and nanofluidics, Appl. Phy. Lett., 81 (2002) 3058-3060.

DOI: 10.1063/1.1515115

Google Scholar

[8] A.R. Parker, H.E. Townley, Biomimetics of photonic nanostructures, Nat Nano, 2 (2007) 347-353.

Google Scholar

[9] Y.T. Tseng, W.H. Tseng, C.H. Lin, R.M. Ho, Fabrication of Double‐Length‐Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition, Adv. Mater., 19 (2007) 3584-3588.

DOI: 10.1002/adma.200700042

Google Scholar

[10] T. Zhu, H.B. Wu, Y. Wang, R. Xu, X.W. Lou, Formation of 1D Hierarchical Structures Composed of Ni3S2 Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H2 Production, Adv. Energy Mater., 2 (2012) 1497-1502.

DOI: 10.1002/aenm.201200269

Google Scholar

[11] H.E. Jeong, R. Kwak, A. Khademhosseini, K.Y. Suh, UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: from lotus leaf to gecko foot hairs, Nanoscale, 1 (2009) 331-338.

DOI: 10.1039/b9nr00106a

Google Scholar

[12] H. Yan, M. Zhang, H. Yan, Electrical transport, magnetic properties of the half-metallic Fe3 O4-based Schottky diode, J. Magn. Magn. Mater., 321 (2009) 2340-2344.

DOI: 10.1016/j.jmmm.2009.02.031

Google Scholar

[13] K. Jurewicz, K. Babeł, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Carbon, 44 (2006) 2368-2375.

DOI: 10.1016/j.carbon.2006.05.044

Google Scholar