The Structure Evolution of Biomimetic Silica Directed by Poly(L-lysine)

Article Preview

Abstract:

Poly (L-lysine·HBr) (PLL) along with phosphate buffer was used as template to direct the formation of biosilica under ambient conditions. We found that PLL with 150 and 400 amino acid residues resulted in forming biosilica plates, performed time-resolved SEM as a function of time to explore the silica structure evolution process during biomineralization and drew a mechanism diagram about the forming of biosilica plates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

292-295

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jin, R. H.; Yuan, J. J., Synthesis of poly(ethyleneimine)s-silica hybrid particles with complex shapes and hierarchical structures. Chemical Communications 2005, (11), 1399-1501.

DOI: 10.1039/b417351a

Google Scholar

[2] Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J., Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 2000, 403, (6767), 289-292.

DOI: 10.1038/35002038

Google Scholar

[3] Jan, J. -S.; Shantz, D. F., Biomimetic Silica Formation: Effect of Block Copolypeptide Chemistry and Solution Conditions on Silica Nanostructure. Adv. Mater. 2007, 19, (19), 2951-2956.

DOI: 10.1002/adma.200602813

Google Scholar

[4] Hong Chen; Lin Xia; Wenxin Fu; Zhenzhong Yang; Zhibo Li., One-step synthesis of water dispersible silica nanoplates. Chemical Commuications; 2013, 49, 1300-1302.

DOI: 10.1039/c2cc38293h

Google Scholar

[5] Qinrong, Wang; Jun Yu; Yunsong Yan; Shaogiang Xu; Fangfang Wang; Qingnan Li; Jinzhi Wang; Xin Zhang; Daojun Liu; Controlled biomimetic silica formation using star-shaped poly(L-lysine). Polymer Chemistry, 2012, 3(5), 1284-90.

DOI: 10.1039/c2py20070h

Google Scholar

[6] Tomczak, M. M.; Glawe, D. D.; Drummy, L. F.; Lawrence, C. G.; Stone, M. O.; Perry, C. C.; Pochan, D. J.; Deming, T. J.; Naik, R. R., Polypeptide-Templated Synthesis of Hexagonal Silica Platelets. J. Am. Chem. Soc. 2005, 127, (36), 12577-12582.

DOI: 10.1021/ja0524503

Google Scholar

[7] Patwardhan, S. V.; Maheshwari, R.; Mukherjee, N.; Kiick, K. L.; Clarson, S. J., Conformation and Assembly of Polypeptide Scaffolds in Templating the Synthesis of Silica: An Example of a Polylysine Macromolecular Switch,. Biomacromolecules 2006, 7, (2), 491-497.

DOI: 10.1021/bm050717k

Google Scholar

[8] Glawe, D. D.; Rodriguez, F.; Stone, M. O.; Naik, R. R., Polypeptide-mediated silica growth on indium tin oxide surfaces. Langmuir 2005, 21, (2), 717-720.

DOI: 10.1021/la047964e

Google Scholar

[9] Rodriguez, F.; Glawe, D. D.; Naik, R. R.; Hallinan, K. P.; Stone, M. O., Study of the chemical and physical influences upon in vitro peptide-mediated silica formation. Biomacromolecules 2004, 5, (2), 261-265.

DOI: 10.1021/bm034232c

Google Scholar

[10] Hawkins, K. M.; Wang, S. S. S.; Ford, D. M.; Shantz, D. F., Poly-L-Lysine Templated Silicas: Using Polypeptide Secondary Structure to Control Oxide Pore Architectures J. Am. Chem. Soc. 2004, 126, (29), 9112-9119.

DOI: 10.1021/ja049936o

Google Scholar

[11] Patwardhan, S. V.; Mukherjee, N.; Steinitz-Kannan, M.; Clarson, S. J., Bioinspired synthesis of new silica structures. Chemical Communications 2003, (10), 1122-1123.

DOI: 10.1039/b302056h

Google Scholar

[12] Lutz, K.; Groger, C.; Sumper, M.; Brunner, E., Biomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyamines. Physical Chemistry Chemical Physics 2005, 7, (14), 2812-2815.

DOI: 10.1039/b505945c

Google Scholar

[13] Brunner, E.; Lutz, K.; Sumper, M., Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution. Physical Chemistry Chemical Physics 2004, 6, (4), 854-857.

DOI: 10.1039/b313261g

Google Scholar