Effects of Temperature on Crack Propagation of Nanocrystalline Nickel: A Molecular Dynamics Approach

Article Preview

Abstract:

The primary purpose of this paper is to study the effects of temperature on crack propagation of nanocrystalline nickel by Molecular Dynamics (MD) simulations. Cracks are loaded in tension mode I. Results show that dislocation emission from a crack tip in nanocrystalline nickel due to the recombination of atomic lattice, then distortion of the crack tip promote crack propagation. The studies we have performed showed that temperature takes a great influence on the crack propagation and the crack shape, and we also found that the crack blunt obviously at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

98-102

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Tao, D, Huang and Y, Guo: Journal-Zhejiang University Engineering Science, Vol. 39 (2005), No. 8, pp.1265-1268.

Google Scholar

[2] P. Hora, V. Pelikán, A. Machová, A. Spielmannová, J. Prahl, M. Landa and O. Červená.: Engineering Fracture Mechanics, Vol. 75 (2008), No. 12, pp.3612-3623.

DOI: 10.1016/j.engfracmech.2007.05.013

Google Scholar

[3] I.R. Vatne, E. Østby and C. Thaulow: Materials Science and Engineering: Vol. 528 (2011), pp.5122-5134.

Google Scholar

[4] A. Uhnáková, J . Pokluda and A. Machová: Computational Materials Science, Vol. 61 (2012), No. 8, pp.12-19.

Google Scholar

[5] M.H. Musazadeh, and K. Dehghani: Computational Materials Science, Vol. 50 (2011), No. 11, p.3075–3079.

Google Scholar

[6] M. Makino, T. Tsuji and N. Noda: Computational Mechanics, Vol. 26 (2000), No. 3, pp.281-287.

Google Scholar

[7] H. Zhang, D. J. Srolovitz, J. F. Douglas and J. A. Warren: Acta materialia, Vol. 55 (2007), No. 13, pp.4527-4533.

Google Scholar

[8] D. Farkas, S. V. Petegem and P.M. Derlet: Acta Materialia, Vol. 53 (2005), No. 11, pp.3115-3123.

DOI: 10.1016/j.actamat.2005.02.012

Google Scholar

[9] D. Farkas: Metallurgical and Materials Transactions A, Vol. 38 (2007), No. 13, pp.2168-2173.

Google Scholar

[10] M. Karimi, T. Roarty and T. Kaplan: Modelling and Simulation in Materials Science and Engineering, Vol. 14 (2006), No. 8, p.1409–1420.

Google Scholar

[11] J.M. Zhang, H.T. Li and K.W. Xu: Solid State Communications, Vol. 141 (2007), No. 10, pp.535-540.

Google Scholar

[12] T. Tang, S. Kim and J.B. Jordon: Computational Materials Science, Vol. 50 (2011), No. 10, pp.2977-2986.

Google Scholar

[13] T. Tang, S. Kim, M.F. Horstemeyer and P. Wang: Engineering Fracture Mechanics, Vol. 78 (2011), No. 1, pp.191-201.

Google Scholar

[14] D.H. Warner and W.A. Curtin: Acta Materialia, Vol. 57 (2009), No. 14, pp.4267-4277.

Google Scholar

[15] J. Mei, Y. Ni and J. Li: International Journal of Solids and Structures, Vol. 48 (2011), No. 21, pp.3054-3062.

Google Scholar

[16] V.A. Borodin and P.V. Vladimirov: Journal of Nuclear Materials, Vol. 415 (2011), No. 3, p.320–328.

Google Scholar

[17] X.J. Wang, B.Q. Zhu and H.M. Wang: Journal of System Simulation, Vol. 22 (2010), No. 2, pp.534-536.

Google Scholar