[1]
A. Manthiram, F. Prado, T. Armstrong, Oxygen separation membranes based on intergrowth structures, Solid State Ionics 152-153 (2002) 647-655.
DOI: 10.1016/s0167-2738(02)00404-6
Google Scholar
[2]
M. Al Daroukh, V.V. Vashook, H. Ullmann, F. Tietz, I. Arual Raj, Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion, Solid State Ionics 158 (2003) 141-150.
DOI: 10.1016/s0167-2738(02)00773-7
Google Scholar
[3]
E.V. Tsipis, M.V. Patrakeev, J.C. Waerenborgh, Y.V. Pivak, A.A. Markov, P. Gaczynski, E.N. Naumovich, V.V. Kharton, Oxygen non-stoichiometry of Ln4Ni2. 7Fe0. 3O10-δ (Ln = La, Pr), J. Solid State Chem. 180 (2007) 1902-(1910).
DOI: 10.1016/j.jssc.2007.04.025
Google Scholar
[4]
Z. Zhang, M. Greenblatt, Synthesis, Structure, and Properties of Ln4Ni3O10-δ (Ln = La, Pr, and Nd), J. Solid State Chem. 117 (1995) 236-246.
DOI: 10.1006/jssc.1995.1269
Google Scholar
[5]
J. P. Tang, R.I. Dass, A. Manthiram, Comparison of the crystal chemistry and electrical properties of La2-xAxNiO4 (A = Ca, Sr, and Ba), Mater. Res. Bull. 35 (2000) 411-424.
DOI: 10.1016/s0025-5408(00)00234-8
Google Scholar
[6]
S.A. Nedilko, V.A. Kulichenko, A.G. Dziazko, E. G. Zenkovich, Oxygen nonstoichiometry and properties of lanthanum nickelates La3−xCaxNi2O7−δ (0 ≤ x ≤ 2. 0). J. Alloys Compds. 367 (2004) 251-254.
DOI: 10.1016/j.jallcom.2003.08.047
Google Scholar
[7]
L. Mogni, F. Prado, A. Caneiro, A. Manthiram, High temperature properties of the n=2 Ruddlesden-Popper phases (La, Sr)3(Fe, Ni)2O7−δ, Solid State Ionics 177 (2006) 1807-1810.
DOI: 10.1016/j.ssi.2006.03.050
Google Scholar
[8]
V.V. Kharton, A. P. Viskup, E. N. Naumovich, F. M. B. Marques, Oxygen ion transport in La2NiO4 - based ceramics, J. Mater. Chem. 9 (1999) 2623-2629.
DOI: 10.1039/a903276b
Google Scholar
[9]
A.A. Yaremchenko, D.O. Bannikov, A.V. Kovalevsky, V.A. Cherepanov, V.V. Kharton, High-temperature transport properties, thermal expansion and cathodic performance of Ni-substituted LaSr2Mn2O7−δ, J. Solid State Chem. 181 (2008) 3024-3032.
DOI: 10.1016/j.jssc.2008.07.038
Google Scholar
[10]
M. Ferkhi, S. Khelili, L. Zerroual, A. Ringuede, M. Cassir, Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1−xCuxO4+δ materials as new cathodes for solid oxide fuel cells, Electrochim. Acta. 54 (2009).
DOI: 10.1016/j.electacta.2009.05.082
Google Scholar
[11]
G. Amow, P.S. Whitfield, I.J. Davidson, R.P. Hammond, C.N. Munnings, S.J. Skinner, Structural and sintering characteristics of the La2Ni1−xCoxO4+δ series, Ceram. Int. 30 (2004) 1635-1639.
DOI: 10.1016/j.ceramint.2003.12.164
Google Scholar
[12]
G. Amow, I.J. Davidson, S.J. Skinner, A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications, Solid State Ionics 177 (2006) 1205-1210.
DOI: 10.1016/j.ssi.2006.05.005
Google Scholar
[13]
T. Klande, S. Cusenza, P. Gaczynski, K.D. Beacker, L. Dorrer, G. Borchardt, A. Feldhoff, In-situ Mössbauer studies of 57Fe-doped Ruddlesden–Popper type lanthanum nickel oxides, Solid State Ionics 222–223 (2012) 8-15.
DOI: 10.1016/j.ssi.2012.06.019
Google Scholar
[14]
T. Armstrong, F. Prado, A. Manthiram, Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3−xCoxO10 (0 ≤ x ≤ 1. 5), Solid State Ionics 140 (2001) 89-96.
DOI: 10.1016/s0167-2738(01)00696-8
Google Scholar
[15]
F. Prado, J.H. Kim, A. Manthiram, Effects of Ga substitution on the high temperature properties of the n = 3 Ruddlesden Popper system LaSr3Fe1. 5−x/2Co1. 5−x/2GaxO10-δ (0 ≤ x ≤ 0. 8), Solid State Ionics 192 (2011) 241-244.
DOI: 10.1016/j.ssi.2010.05.056
Google Scholar