L10-CoPt Bit Patterned Media with Tilted Easy Axis for Ultrahigh Areal Density over 2.5 Tb/in2

Article Preview

Abstract:

Ultrahigh areal density is the key target of hard disk drive technology. Hence, writing field strength from head and switching field, Hsw, of media should be improved. In this work, we propose the one of alternative method to increase data density and reduce Hsw of the media by using tilted easy axis technology for bit patterned media (BPM) at areal density beyond 2.5 Tb/in2. Moreover, transition noise and superparamagnetic limit have been eliminated owing to characteristics of BPM. The effect of exchange coupled between adjacent bits, Adot, of tilted easy axis of BPM is analyzed by micromagnetic simulation software - the object oriented micromagnetic framework based on Landau-Lifshitz-Gilbert equation. The BPM with tilted easy axis perform clearly the reduction of Hsw below perpendicular media and available writing head field. The Adot of BPM has no effect on decreasing Hsw. Anisotropy and Zeeman energy density of BPM with tilted easy axis are higher and lower than perpendicular BPM, respectively. Thereby, BPM with tilted easy axis have high potentiality to improve Hsw of media at ultrahigh data density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1255-1259

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Wood, Future hard disk drive systems, J. Magn. Magn. Mater. 321 (2009) 555-561.

Google Scholar

[2] J. H. Judy, Advancements in PMR thin-film media, J. Magn. Magn. Mater. 287 (2005) 16-21.

Google Scholar

[3] Y. Kanai, S. J. Greaves, K. Yamakawa, H. Aoi, H. Muraoka and Y. Nakamura, A single-pole-type head design for 400 Gb/in2 recording, IEEE Trans. Magn. 41 (2005) 687-695.

DOI: 10.1109/tmag.2004.839073

Google Scholar

[4] H. Jiang, K. Sin, and Y. Chen, High moment soft FeCoN/NiFe laminated thin films, IEEE Trans. Magn. 41 (2005) 2896-2898.

DOI: 10.1109/tmag.2005.855306

Google Scholar

[5] W. Tipcharoen, A. Kaewrawang, A. Siritaratiwat and K. Tonmitra, Investigation on magnetic properties of L10-FePt graded media multilayer, Adv. Mat. Res. 802 (2013) 189-193.

DOI: 10.4028/www.scientific.net/amr.802.189

Google Scholar

[6] C. Ross, Patterned magnetic recording media, Annu. Rev. Mater. Res. 31 (2001) 203-235.

DOI: 10.1146/annurev.matsci.31.1.203

Google Scholar

[7] N. Honda, K. Yamakawa and K. Ouchi, Recording simulation of patterned media toward 2 Tb/in2, IEEE Trans. Magn. 43 (2007) 2142-2144.

DOI: 10.1109/tmag.2007.893139

Google Scholar

[8] J. P. Wang, Y. Y. Zou, C. H. Hee, T. C. Chong and Y. F. Zheng, Approaches to tilted magnetic recording for extremely high areal density, IEEE Trans. Magn. 39 (2003) 1930-(1935).

DOI: 10.1109/tmag.2003.813775

Google Scholar

[9] X. Z. Cheng and M. B. A. Jalil, Micromagnetic study of intergranular exchange coupling in tilted perpendicular media, IEEE Trans. Magn. 41 (2005) 3115-3117.

DOI: 10.1109/tmag.2005.854887

Google Scholar

[10] H. Gavrila, New solutions for perpendicular magnetic recording media, J. Optoelectron. Adv. Mater. 8 (2006) 449-454.

Google Scholar

[11] Y. Y. K. Hnin, T. Suzuki and A. K. Singh, Perpendicular magnetic recording media (FePt-Fe3Pt)/MgO with tilted easy axis, IEEE Trans. Magn. 42 (2006) 2354-2356.

DOI: 10.1109/tmag.2006.878682

Google Scholar

[12] G. Varvaro, E. Agostinelli, S. Laureti, A. M. Testa, A. Generosi, B. Paci and V. R. Albertini, Study of magnetic easy axis 3-D arrangment in L10 CoPt(111)/Pt(111)/MgO(100) tilted system for perpendicular recording, IEEE Trans. Magn. 44 (2008).

DOI: 10.1109/tmag.2008.918205

Google Scholar

[13] M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer and G. Schatz, Magnetic multilayers on nanospheres, Nature Mater. 4 (2005) 203-206.

DOI: 10.1038/nmat1324

Google Scholar

[14] Y. Y. Zou, J. P. Wang, C. H. Hee and T. C. Chong, Tilted media in a perpendicular recording system for high areal density recording, Appl. Phys. Lett. 82 (2003) 2473-2475.

DOI: 10.1063/1.1565503

Google Scholar

[15] M. J. Donahue and D. G. Porter, OOMMF User's Guide, Release 1. 2a3, [EB/OL]. http: /math. nist. gov/oommf/, October 30, (2002).

Google Scholar

[16] R. Hu, A. K. Soh, G. P. Zheng and Y. Ni, Micromagnetic modeling studies on the effects of stress on magnetization reversal and dynamic hysteresis, J. Magn. Magn. Mater. 301 (2006) 458-468.

DOI: 10.1016/j.jmmm.2005.07.023

Google Scholar

[17] E. C. Stoner and E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Phil. Trans. R. Soc. Lond. A, 240 (1948) 599-642.

DOI: 10.1098/rsta.1948.0007

Google Scholar

[18] J. P. Wang, Tilting for the top, Nature Mater. 4 (2005) 191-192.

Google Scholar

[19] H. Takahoshi, H. Saito and S. Ishio, MFM analysis of magnetization process in CoPt dot-array, J. Magn. Magn. Mater. 272-276 (2004) e1313-e1315.

DOI: 10.1016/j.jmmm.2003.12.1037

Google Scholar

[20] S. Iida, S. Iwasaki, Y. Iwama, H. Kobayashi, Y. Yoshihumi, T. Nagashima and A. Watanabe, Hard magnetic materials, Maruzen publishers, Tokyo (1976) (in Japanese).

Google Scholar