Microwave Assisted Magnetization Reversal on Exchange Coupled Composite Media

Article Preview

Abstract:

To overcome superparamagnetic limit, microwave assisted magnetic recording (MAMR) is one interesting magnetic recording technology. Therefore, the effect of microwave on magnetization reversal in media should be analyzed. In this work, we propose the MAMR to decrease switching field (coercivity, Hsw) in exchange coupled composite (ECC) media by using the micromagnetic simulation based on the Landau - Lifshitz - Gilbert equation. The Hsw of single layer and ECC media without microwave field is 110.90 and 7.7 kOe, respectively. When the oscillating microwave field is added, Hsw of single layer media with microwave frequency of 2.5 - 40 GHz is lower than 110.90 kOe. Likewise, Hsw of ECC media with microwave frequency of 5 - 16 GHz is lower than 7.7 kOe and has the lowest value of 4.9 kOe at frequency of 10 GHz. The results from this work lead to solve superparamagnetic limit and increase areal density in hard disk drive.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1265-1269

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, Y. Liu, F. Wang, J. Zhang, R. Zhang, Z. Wang and X. Xu, Design and micromagnetic simulation of the L10-FePt/Fe multilayer graded film, J. Appl. Phys. 111 (2012) 073910.

DOI: 10.1063/1.3702876

Google Scholar

[2] H. J. Richter, An Approach to Recording on Tilted Media, IEEE Trans. Magn, 29 (1993).

Google Scholar

[3] M. Yamazoe, Magnetic Recording Media Photoconductors, FUJI ELECTRIC REVIEW, 55 (2009).

Google Scholar

[4] R. H. Victora and X. Shen, Exchange coupled composite media for perpendicular magnetic recording, IEEE Trans. Magn, 41 (2005) 2828-2833.

DOI: 10.1109/tmag.2005.855263

Google Scholar

[5] J. P. Wang, W. Shen and J. Bai, Exchange coupled composite media for perpendicular magnetic recording, IEEE Trans. Magn, 41 (2005) 3181-3186.

DOI: 10.1109/tmag.2005.855278

Google Scholar

[6] M. Kapoor, X. Shen and R. H. Victora, Effect of intragranular exchange on exchange-coupled composite media, J. Appl. Phys, 99 (2006).

DOI: 10.1063/1.2163850

Google Scholar

[7] R. Wood, The Feasibility of Magnetic Recording at 10 Terabits per Square Inch on Conventional Media, IEEE Trans. Magn, 45 (2009) 917-923.

DOI: 10.1109/tmag.2008.2010676

Google Scholar

[8] M. H. Kryder, E. C. Gage and T. W. McDaniel, Heat Assisted Magnetic Recording, Proceedings of the IEEE, 96 (2008).

Google Scholar

[9] M. A. Seigler, W. A. Challener and E. Gage, Integrated Heat Assisted Magnetic Recording Head: Design and Recording Demonstration, IEEE Trans. Magn, 44 (2008) 119-124.

DOI: 10.1109/tmag.2007.911029

Google Scholar

[10] T. J. Fal and R. E. Camley, Microwave Assisted Switching in Bit Patterned Media: Accessing Multiple States, J. Appl. Phys. Lett, 97 (2010).

DOI: 10.1063/1.3483773

Google Scholar

[11] T. J. Fal, K. L. Livesey and R. E. Camley, Domain wall and microwave switching in an exchange spring bilayer, J. Appl. Phys, 109 (2011).

DOI: 10.1063/1.3573497

Google Scholar

[12] M. Laval, J. J. Bonnefois, J. F. Bobo, F. Issac and F. Boust, Microwave assisted switching of NiFe magnetic microstructures, J. Appl. Phys, 105 (2009).

DOI: 10.1063/1.3093949

Google Scholar

[13] H. T. Nembach, H. Bauer, J. M. Shaw, M. L. Scheneider and T. J. Silva, Microwave assisted magnetization reversal in single domain nanoelements, J. Appl. Phys. Lett, 95 (2009).

DOI: 10.1063/1.3196556

Google Scholar

[14] Y. Wang, Physics and Micromagnetic Analysis of Advanced Recording Technologies, Thesis of Carnegie Mellon University, (2011).

Google Scholar

[15] U. Ozgur, Y. Alivov and H. Morkoc, Microwave ferrites, part 1: fundamental properties, J. Mater. Sci, 20 (2009) 789–834.

DOI: 10.1007/s10854-009-9923-2

Google Scholar

[16] M. J. Donahue and D. G. Porter, OOMMF User's Guide, Release 1. 2a3, [EB/OL]. http: /math. nist. gov/oommf/, October 30, (2002).

Google Scholar