Tuning Optical Properties of Electrospun Titanium Dioxide Nanofibers by Controlling Particle Sizes

Article Preview

Abstract:

Titanium dioxide (TiO2) nanofibers with different particle sizes were fabricated using an electrospinning technique. The nanofibers were prepared from a mixture of titanium tetraisopropoxide and polyvinyl pyrrolidone (PVP). The scanning electron microscope (SEM) and the transmission electron microscope (TEM) were used to analyze the morphology and sizes of TiO2 nanoparticles within the nanofibers. The particle sizes of TiO2 were measured to be 17 nm, 28 nm and 35 nm for nanofibers calcined at 500 °C, 600 °C and 700 °C, respectively. Ultraviolet-visible absorption spectroscopy analysis and the application of the KubelkaMunk function reveal the size-dependent band gap energy of TiO2 nanofibers. The band gap energies are measured to be 2.9 eV, 2.6 eV and 2.5 eV for TiO2 nanofibers with average particle sizes of 17 nm, 28 nm and 35 nm, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

360-364

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. D. Yoffe, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Advances in Physics, 42 (1993) 173–266.

DOI: 10.1080/00018739300101484

Google Scholar

[2] Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape , Physical Review B, 38 (1988) 9797–9805.

DOI: 10.1103/physrevb.38.9797

Google Scholar

[3] L. E. Brus, Zero-dimensional excitons, in semiconductor clusters, IEEE Journal of Quantum Electronics, 22 (1986) 1909–(1914).

DOI: 10.1109/jqe.1986.1073184

Google Scholar

[4] M. V. Rama Krishna and R. A. Friesner, Exciton spectra of semiconductor clusters, Physical Review Letters, 67 (1991) 629–632.

DOI: 10.1103/physrevlett.67.629

Google Scholar

[5] S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals. 5 (1998) 84–152.

Google Scholar

[6] L. Kavan, T. Stoto, M. Gratzel, D. Fitzmaurice, V. Shklover, Quantum Size Effects in Nanocrystalline Semiconducting TiO2 Layers Prepared by Anodic Oxidative Hydrolysis of TIC13. J. Phys. Chem., 97 (1993) 9493–9498.

DOI: 10.1021/j100139a038

Google Scholar

[7] M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, X. Gonze, First principles study of titanium dioxide: Rutile and anatase, Jpn. J. Appl. Phys., 39 (2000) L847–L850.

DOI: 10.1143/jjap.39.l847

Google Scholar

[8] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Preparation and Characterization of Quantum-Size Titanium Dioxide. J. Phys. Chem. 92 (1988) 5196–5201.

DOI: 10.1021/j100329a027

Google Scholar

[9] B. O. Regan, M. Gratzel, A low cost, high-efficiency solar cell base on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[10] M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells, APPLIED PHYSICS LETTERS 87 (2005) 113113-113116.

DOI: 10.1063/1.2048816

Google Scholar

[11] Zheng, L., Xu, M., Xu, T., TiO2-x thin films as oxygen sensor, Sensors Actuators B 66 (2000) 28-30.

DOI: 10.1016/s0925-4005(99)00447-5

Google Scholar

[12] K. Onozuka, B. Ding, Y. Tsuge, Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications, Nanotechnology 17 (2006) 1026-1031.

DOI: 10.1088/0957-4484/17/4/030

Google Scholar

[13] J. H. Park, K. S. Hong, B. K. Moon, B. C. Choi, H. S. Lee, Physical Properties of Shape-Controlled TiO2 Nanoparticles, Journal of the Korean Physical Society 47 (2005) 884-888.

Google Scholar

[14] Z.G. Shang, Z.Q. Liuy, P.J. Shang, J.K. Shang, Synthesis of Single-Crystal TiO2 Nanowire Using Titanium Monoxide Powder by Thermal Evaporation, J. Mater. Sci. Technol., 28 (2012) 385-390.

DOI: 10.1016/s1005-0302(12)60072-3

Google Scholar

[15] K. Shankar1, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes, Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnology 18 (2007).

DOI: 10.1088/0957-4484/18/6/065707

Google Scholar

[16] X. Feng, J. Zhai, L. Jiang, The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films, 44 (2005) 5115-5118.

DOI: 10.1002/anie.200501337

Google Scholar

[17] J. Miao, M. Miyauchi, T.J. Simmons, J.S. Dordick, R.J. Linhardt, Electrospinning of nanomaterials and applications in electronic components and devices, J. Nanosci. Nanotechno. 10 (2010) 5507-5519.

DOI: 10.1166/jnn.2010.3073

Google Scholar

[18] J. Doshi, D. H Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostatics 35 (1995) 151-160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[19] R. Nayak, R. Padhye, I. L. Kyratzis, Y. Truong, L. Arnold, Recent Advances in Nanofibre Fabrication Techniques, Textile Research Journal 1 (2011) 1-19.

DOI: 10.1177/0040517511424524

Google Scholar

[20] C. Tekmen, A. Suslu, U. Cocen, Titania nanofibers prepared by electrospinning, Mater. Lett. 62 (2008) 4470-4472.

DOI: 10.1016/j.matlet.2008.08.002

Google Scholar

[21] G. He, Y. Cai, Y. Zhao, X. Wang, C. Lai, M. Xi, Z. Zhu, H. Fong , Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas, Journal of Colloid and Interface Science 398 (2013) 103-111.

DOI: 10.1016/j.jcis.2013.02.009

Google Scholar