[1]
A.J. Sedriks, Corrosion of Stainless Steels, Electrochemical Society, Wiley, (1979).
Google Scholar
[2]
J.D. Bronzino, The Biomedical Engineering Handbook, second ed., CRC Press, Boca Raton, FL, (2000).
Google Scholar
[3]
J. Pitter, F. Cerny, J. Cizner, J. Suchanek, D. Tischler, High temperature corrosion properties of SiNx and CrNx coatings deposited by IBAD method, Surf Coat Tech. 200 (2005) 73-76.
DOI: 10.1016/j.surfcoat.2005.02.059
Google Scholar
[4]
S.G. Kim, M.Z. Hong, S.P. Yoon, J. Han, S.W. Nam T.H. Lim, S.A. Hong, Preparation of YSZ Coated AISI-Type 316L Stainless Steel by the Sol-Gel Coating Method and Its Corrosion Behavior in Molten Carbonate, J. Sol-Gel Sci. Tech. 28 (2003) 297-306.
DOI: 10.1023/a:1027466113372
Google Scholar
[5]
J.E. Indacochea, J.L. Smith, K.R. Litko, E.J. Karell, A.G. Raraz, High-temperature oxidation and corrosion of structural materials in molten chlorides, Oxid Met. 55(1-2) (2001) 1-16.
Google Scholar
[6]
A.A. Syed, T.A. Denoirjean, P. Fauchais, J.C. Labbe, On the oxidation of stainless steel particles in the plasma jet. Surf Coat Tech. 200 (2006) 4368–4382.
DOI: 10.1016/j.surfcoat.2005.02.156
Google Scholar
[7]
C. Vernault, J. Mendez, Fatigue damage in a 316L type stainless steel induced by surface oxide layers. Annales de Chimie: Science des Materiaux. 24 (4-5) (1999) 351-362.
DOI: 10.1016/s0151-9107(99)80074-9
Google Scholar
[8]
A. L. Johnson, D. Parsons, J. Manzerova, D. L. Perry, D. Koury, B. Hosterman, J. W. Farley, Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead–bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation. J. Nucl. Mater. 328 (2004).
DOI: 10.1016/j.jnucmat.2004.03.006
Google Scholar
[9]
ASM International Handbook Committee, ASM Handbook vol. 1: Properties and selection: irons, steels, and high-performance alloys, ASM International, 1993, pp.1-16.
DOI: 10.31399/asm.hb.v01.9781627081610
Google Scholar
[10]
J.R. Davis (ed. ), ASM Specialty Handbook: Stainless Steels, ASM International, OH, (1994).
Google Scholar
[11]
A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Materials Park, OH, (2002).
Google Scholar
[12]
N. Pichaiwong, P. Wangyao, G. Lothongkum, P. Visuttipitukul, S. Asavavisithchai, R. Tongsri , N. Chuankrerkkul, Effect of Co a ddition to heat treated P/M 316L stainless steel on α' martensite formation and mechanical properties, Mater Test. 54 (2012).
DOI: 10.3139/120.110389
Google Scholar
[13]
ASTM Standard ASTM A262 - 13, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, West Conshohocken, PA, (2003).
DOI: 10.1520/a0262-02ae02
Google Scholar
[14]
M. Linder, T. Hocker, L. Holzer, K. Andreas Friedrich, B. Iwanschitz, A. Mai, J. Andreas Schuler, Cr2O3 scale growth rates on metallic interconnectors derived from 40, 000 h solid oxide fuel cell stack operation, J. Power Sources. 243 (2013).
DOI: 10.1016/j.jpowsour.2013.05.200
Google Scholar
[15]
S. J. Rosenberg, Nickel and its alloys, Institute for material research, National Bureau of standards, Washington, D.C., (1968).
Google Scholar
[16]
N. Birks, G. H. Meier, F. S. Pettit, High temperature oxidation for metal, Cambridge, UK, (2006).
Google Scholar
[17]
N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, H. Buscail, Characterization of the oxides formed at 1000°C on the AISI 304 stainless steel by X-ray diffraction and infrared spectroscopy, Appl Surf Sci. 254 (2008).
DOI: 10.1016/j.apsusc.2007.09.018
Google Scholar
[18]
Y. Li, Y. Baba, T. Sekiguchi, Study on the oxidation behaviour of Fe, Cr and Ni in O+2 ion implanted SUS304 stainless steel by in situ SR-XPS and ex situ scanning tunneling microscope, Corr Sci. 43 (2001) 903-917.
DOI: 10.1016/s0010-938x(00)00109-8
Google Scholar