Improvement of Oxidation Behavior at 1,073 and 1,173K of Austenitic Stainless Steels by Addition of Ni

Article Preview

Abstract:

This work studied the effect of Nickel addition to improve the oxidation behavior of austenitic stainless steels at 1,073 K and 1,173 K. The results show that Nickel increases the oxidation resistance of the austenitic stainless steels. The compositions of oxide scale also change form only Cr2O3 to be Cr2O3, Fe2O3, NiFe2O4 and Ni (Cr2O4). The oxidation behavior follows the parabolic rate law; W = ktn, where W = weight gain (g/cm2), t = time (s), k is the exponential rate constant and n is the exponent of growth rate. The n values are between 0.47-0.88.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

338-343

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Sedriks, Corrosion of Stainless Steels, Electrochemical Society, Wiley, (1979).

Google Scholar

[2] J.D. Bronzino, The Biomedical Engineering Handbook, second ed., CRC Press, Boca Raton, FL, (2000).

Google Scholar

[3] J. Pitter, F. Cerny, J. Cizner, J. Suchanek, D. Tischler, High temperature corrosion properties of SiNx and CrNx coatings deposited by IBAD method, Surf Coat Tech. 200 (2005) 73-76.

DOI: 10.1016/j.surfcoat.2005.02.059

Google Scholar

[4] S.G. Kim, M.Z. Hong, S.P. Yoon, J. Han, S.W. Nam T.H. Lim, S.A. Hong, Preparation of YSZ Coated AISI-Type 316L Stainless Steel by the Sol-Gel Coating Method and Its Corrosion Behavior in Molten Carbonate, J. Sol-Gel Sci. Tech. 28 (2003) 297-306.

DOI: 10.1023/a:1027466113372

Google Scholar

[5] J.E. Indacochea, J.L. Smith, K.R. Litko, E.J. Karell, A.G. Raraz, High-temperature oxidation and corrosion of structural materials in molten chlorides, Oxid Met. 55(1-2) (2001) 1-16.

Google Scholar

[6] A.A. Syed, T.A. Denoirjean, P. Fauchais, J.C. Labbe, On the oxidation of stainless steel particles in the plasma jet. Surf Coat Tech. 200 (2006) 4368–4382.

DOI: 10.1016/j.surfcoat.2005.02.156

Google Scholar

[7] C. Vernault, J. Mendez, Fatigue damage in a 316L type stainless steel induced by surface oxide layers. Annales de Chimie: Science des Materiaux. 24 (4-5) (1999) 351-362.

DOI: 10.1016/s0151-9107(99)80074-9

Google Scholar

[8] A. L. Johnson, D. Parsons, J. Manzerova, D. L. Perry, D. Koury, B. Hosterman, J. W. Farley, Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead–bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation. J. Nucl. Mater. 328 (2004).

DOI: 10.1016/j.jnucmat.2004.03.006

Google Scholar

[9] ASM International Handbook Committee, ASM Handbook vol. 1: Properties and selection: irons, steels, and high-performance alloys, ASM International, 1993, pp.1-16.

DOI: 10.31399/asm.hb.v01.9781627081610

Google Scholar

[10] J.R. Davis (ed. ), ASM Specialty Handbook: Stainless Steels, ASM International, OH, (1994).

Google Scholar

[11] A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Materials Park, OH, (2002).

Google Scholar

[12] N. Pichaiwong, P. Wangyao, G. Lothongkum, P. Visuttipitukul, S. Asavavisithchai, R. Tongsri , N. Chuankrerkkul, Effect of Co a ddition to heat treated P/M 316L stainless steel on α' martensite formation and mechanical properties, Mater Test. 54 (2012).

DOI: 10.3139/120.110389

Google Scholar

[13] ASTM Standard ASTM A262 - 13, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, West Conshohocken, PA, (2003).

DOI: 10.1520/a0262-02ae02

Google Scholar

[14] M. Linder, T. Hocker, L. Holzer, K. Andreas Friedrich, B. Iwanschitz, A. Mai, J. Andreas Schuler, Cr2O3 scale growth rates on metallic interconnectors derived from 40, 000 h solid oxide fuel cell stack operation, J. Power Sources. 243 (2013).

DOI: 10.1016/j.jpowsour.2013.05.200

Google Scholar

[15] S. J. Rosenberg, Nickel and its alloys, Institute for material research, National Bureau of standards, Washington, D.C., (1968).

Google Scholar

[16] N. Birks, G. H. Meier, F. S. Pettit, High temperature oxidation for metal, Cambridge, UK, (2006).

Google Scholar

[17] N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, H. Buscail, Characterization of the oxides formed at 1000°C on the AISI 304 stainless steel by X-ray diffraction and infrared spectroscopy, Appl Surf Sci. 254 (2008).

DOI: 10.1016/j.apsusc.2007.09.018

Google Scholar

[18] Y. Li, Y. Baba, T. Sekiguchi, Study on the oxidation behaviour of Fe, Cr and Ni in O+2 ion implanted SUS304 stainless steel by in situ SR-XPS and ex situ scanning tunneling microscope, Corr Sci. 43 (2001) 903-917.

DOI: 10.1016/s0010-938x(00)00109-8

Google Scholar