Estimation of Missing GPS Precipitable Water Vapor Data by Zenith Wet Delay and Meteorological Data

Article Preview

Abstract:

This article presents a statistical correlation between GPS precipitable water vapor and meteorological data, i.e., surface temperature, air pressure, relative humidity, dew point temperature, and water vapor pressure by using linear regression. The data, recorded over a 4-year period, was used as an estimation of missing GPS precipitable water vapor data from discontinuous recordings. A multiple linear regression equation showed a correlation among zenith wet delay (ZWD), water vapor pressure (e) and surface temperature (T) was ZWD(e,T) = 17.4952e-0.8281T-93.164, with a coefficient of determination (R2) of 0.725, a mean absolute error of 8.71 mm, a root mean square error of 10.39 mm, and a mean absolute percentage error of 18.63%. The equation obtained can be used to estimate GPS precipitable water vapor data which is missing from recordings due to accident or technological error.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

703-708

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Ortiz de Galisteo., C. Toledano., V. Cachorro., & B. Torres. (2010). Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. GPS Solut, (14), 389-395.

DOI: 10.1007/s10291-010-0163-y

Google Scholar

[2] M. Boccolari.,S. Fazlagic., P. Frontero., L. Lombroso., S. Pugnaghi., R. Santangelo., S. Corradini. & S. Teggi. (2002).

DOI: 10.4401/ag-3534

Google Scholar

[3] M. Bevis., S. Businger., T.A. Herring., C. Rocken., R.A. Anters., & R.H. Ware. (1992). GPS Meteorology' Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. JOURNAL OF GEOPHYSICAL RESEARCH, (97), 15787-15801.

DOI: 10.1029/92jd01517

Google Scholar

[4] S. Businger., S.R. Chiswell., M. Bevis., J. Duan., R.A. Anthes., C. Rocken., R.H. Ware., M. Exner., T. Vanhover., & F.S. Solhein. (1996). The promise of GPS in atmospheric monitoring. Bull. Am. Meteorol, (77), 5-18.

DOI: 10.1175/1520-0477(1996)077<0005:tpogia>2.0.co;2

Google Scholar

[5] Chao-Lin Zhang a, Ying-Hwa Kuo b, Lian-Jun Dai c, Yan-Li Chu a, John Braunb, Jing-jiang Zhanga Qing-Chun Li a Min Chen. (2008).

Google Scholar

[6] W. Hao., L. Guoping., & W. Dan. (2011). A Methos of Inserting and Meading for the GPS Precipitable water Vapor. Multimedia Technology (ICMT), 2011 International Conference, 3350-3353.

DOI: 10.1109/icmt.2011.6002709

Google Scholar

[7] Xiaoming Li, Lisheng xu, Yansong Fang, Yujie Zhang Jilie Ding, Hailei Liu & Xiaobo Deng. (2010).

DOI: 10.1109/iita-grs.2010.5603260

Google Scholar

[8] M. Bevis, S. Businger and S. Chiswell. (1994). GPS Meteorology: mapping zenith wet delays onto Precipitable Water. Appl. Meteorol, (33), 379-386.

DOI: 10.1175/1520-0450(1994)033<0379:gmmzwd>2.0.co;2

Google Scholar

[9] Sssatamoinen,J. (1972). Atmospheric correction for the troposphere and stratoshere in radio ranging of satellites, in The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser. r Am Geophys. Un., Washington D.C., (15), 245-251.

DOI: 10.1029/gm015p0247

Google Scholar

[10] SATOMURA, M., Shita-chu, E., Kazuyuki,U., Shimada,S., Kato, T., … Thana, B. (2010). On the Precipitable Water Vapor Obtained by Using GPS Observations in Thailand (2001-2006). Shizuoka University earth science research report, 37, 1–11.

Google Scholar