Microstructure and Tensile Behavior of Ti-Rich Ti-Ni-Cu Melt-Spun Ribbon

Article Preview

Abstract:

Microstructure and mechanical properties of Ti51.5Ni25Cu23.5 ribbon fabricated by melt spinning were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and tensile tests. Some B19 martensite crystalline with (011) compound twin was embedded in the mainly amorphous ribbon, while the ribbon annealed at 450°C for 1 h is at fully martensitic state. Annealing process alter the preferential orientation from (022)-B19 to (111)-B19. Tensile fracture stresses of as-spun ribbon and the annealed ribbon are 1257 MPa and 250 MPa, respectively. The tensile fracture morphology of as-spun ribbon shows typical vein fringe while that of the annealed ribbon reveals fine but depth-inhomogeneous dimples. After tensile deformation, the annealed ribbon exhibits typical martensitic detwinning behavior accompanying with the strain contrast.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1163-1167

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.H. Nam, T. Saburi and K. Shimizu, Mater. Trans. JIM Vol. 31 (1990), p.959.

Google Scholar

[2] O. Mericier and K.N. Melton, Metall. Trans. A Vol. 10 (1979), p.387.

Google Scholar

[3] D. Reynaerts, J. Peirs and H. Van Brussel, J. Micromech. Microeng. Vol. 5 (1995), p.150.

Google Scholar

[4] T.H. Nam, J.P. Noh, D.W. Jung, Y.W. Kim, H.J. Im, J.S. Ahn and T. Mitani, J. Mater. Sci. Lett. Vol. 21 (2002), p.685.

Google Scholar

[5] A. Ishida, M. Sato, K. Ogawa and K. Yamada, Mater. Sci. Eng. A Vol. 438-440 (2006), p.683.

Google Scholar

[6] W.J. He, O.V. Tolochko, G.H. Min and H. Yu, Metallofiz. Nov. Tekh+. Vol. 29 (2007), p.1167.

Google Scholar

[7] K. Otsuka and X. Ren, Prog. Mater. Sci. Vol. 50 (2005), p.511.

Google Scholar

[8] Y. Liu, Z.L. Xie, J. Van Humbeeck and L. Delaey, Acta Mater. Vol. 47 (1999), p.645.

Google Scholar

[9] T. Saburi, Y. Watanbe and S. Nenno, ISIJ International. Vol. 29 (1989), p.405.

Google Scholar

[10] H.P. Karnthaler, T. Waitz, C. Rentenberger and B. Mingler, Mater. Sci. Eng. A Vol. 387-389 (2004), p.777.

DOI: 10.1016/j.msea.2004.01.125

Google Scholar

[11] Y. Liu, Mater. Sci. Eng. A Vol. 354 (2003), p.286.

Google Scholar

[12] J.Z. Chen and S.K. Wu, J. Non-Cryst. Solids Vol. 288 (2001), p.159.

Google Scholar

[13] V. Bengus, E. Tabachnikova, K. Csach, J. Miskuf and V. Ocelik, Scripta Mater. Vol. 35 (1996), p.781.

Google Scholar