[1]
Melani Sooriyaarachchi and Jurgen Gailer, Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES. Dalton Trans. 39 (2010) 7466-7473.
DOI: 10.1039/c0dt00229a
Google Scholar
[2]
Mohammed A. and Al-Anber, Removal of high-level Fe3+ from aqueous solution using natural inorganic materials: Bentonite (NB) and quartz (NQ). Desalination 250 (2010) 885-891.
DOI: 10.1016/j.desal.2009.06.071
Google Scholar
[3]
Biswas, R.K., Begum, D.A., Solvent extraction of Fe3+ from chloride solution by D2EHPA in kerosene. Hydrometallurgy 50 (1998) 153-168.
DOI: 10.1016/s0304-386x(98)00048-6
Google Scholar
[4]
Anna Parusa, Karolina Wieszczyckaa, Andrzej Olszanowskia , Solvent Extraction of Iron(III) From Chloride Solutions in the Presence of Copper(II) and Zinc(II) Using Hydrophobic Pyridyl Ketoximes. Separation Science and Technology 46 (2011) 87-93.
DOI: 10.1080/01496395.2010.498802
Google Scholar
[5]
Sun, P.P., Lee, M.S., Separation of Ir(IV) and Rh(III) from mixed chloride solutions by solvent extraction. Hydrometallurgy 105 (2011) 334-340.
DOI: 10.1016/j.hydromet.2010.11.008
Google Scholar
[6]
Qian X, Zhang X, Bai Y, Li T, Tang X, Wang E, Dong S, Photoelectrochemical characteristics of a-Fe2O3 nanocrystalline semiconductor thin film. J Nanopart Res 2(2) (2000) 191-198.
Google Scholar
[7]
Deb P, Biswas T, Sen D, Basumallick A, Mazumder S, Characteristics of Fe2O3 nanoparticles prepared by heat treatment of a nonaqueous powder precipitate. J Nanopart Res 4(1-2) (2002) 91-97.
Google Scholar
[8]
Demianets LN, Pouchko SV, Gaynutdinov RV Fe2O3 single crystals: hydrothermal growth, crystal chemistry and growth morphology. J Cryst Growth 259(1-2) (2003) 165-178.
DOI: 10.1016/s0022-0248(03)01586-0
Google Scholar
[9]
Konish Y, Kawamura T, Asai S, Preparation and characterization of ultrafine nickel ferrite powders by hydrolysis of iron(III)-nickel carboxylate dissolved in organic solvent. Ind Eng Chem Res 35(1) (1996) 320-325.
DOI: 10.1021/ie950317l
Google Scholar
[10]
Adschiri T, Hakuta Y, Arai K, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind Eng Chem Res 39(12) (2000) 4901-4907.
DOI: 10.1021/ie0003279
Google Scholar
[11]
Wang XY, Kang XH, Xie HQ, Lu LZ, Studies of heterogeneous hydrothermal stripping fromiron-loaded naphthenic acid-alcohol-kerosen. Chin J Process Eng 3(2) (2003) 109-115.
Google Scholar
[12]
Wang XY, Kang XH, Xie HQ, Lu LZ, Preparation of nanosized a-Fe2O3 by hydrothermal stripping process. Chin J Appl Chem 21(7) (2004b) 655-659.
Google Scholar
[13]
Wang XY, Han JY, Yang GQ, Qin X, Study on synthesis and doped lanthanum of NiFe2O4 nanoparticles by hydrothermal stripping. J Funct Mater 38 (2007a) 1282-1284.
Google Scholar
[14]
Wang XY, Han JY, Yang GQ, Lu LZ, Xie HQ, Kinetic study of hydrothermal stripping from iron–loaded organic phase. Trans TJU 13(2) (2007b) 113-116.
Google Scholar
[15]
Wang XY, Han JY, Wang J, Yang GQ, Synthesis of spinel MgFe2O4 nano-powder by hydrothermal stripping. J Mater Eng 10 (2008) 98-100.
Google Scholar
[16]
Wang XY, Miao C, Zhou J, Ma C, Wang HF, Sun SQ, A novel synthesis of spherical LiFePO4 nanoparticles. Mater Lett 65 (2011) 2096-(2099).
DOI: 10.1016/j.matlet.2011.04.069
Google Scholar